"Чистая"
и прикладная математика

Математическое ожидание и дисперсия случайной величины

Математическое ожидание и дисперсия - чаще всего применяемые числовые характеристики случайной величины. Они характеризуют самые важные черты распределения: его положение и степень разбросанности. Во многих задачах практики полная, исчерпывающая характеристика случайной величины - закон распределения - или вообще не может быть получена, или вообще не нужна. В этих случаях ограничиваются приблизительным описанием случайной величины с помощью числовых характеристик.

Математическое ожидание часто называют просто средним значением случайной величины. Дисперсия случайной величины - характеристика рассеивания, разбросанности случайной величины около её математического ожидания.

Математическое ожидание дискретной случайной величины

Подойдём к понятию математического ожидания, сначала исходя из механической интерпретации распределения дискретной случайной величины. Пусть единичная масса распределена между точками оси абсцисс x1x2, ..., xn, причём каждая материальная точка имеет соответствующую ей массу из p1p2, ..., pn. Требуется выбрать одну точку на оси абсцисс, характеризующую положение всей системы материальных точек, с учётом их масс. Естественно в качестве такой точки взять центр массы системы материальных точек. Это есть среднее взвешенное значение случайной величины X, в которое абсцисса каждой точки xi входит с "весом", равным соответствующей вероятности. Полученное таким образом среднее значение случайной величины X называется её математическим ожиданием.

Математическим ожиданием дискретной случайной величины называется сумма произведений всех возможных её значений на вероятности этих значений:

Пример 1. Организована беспроигрышная лотерея. Имеется 1000 выигрышей, из них 400 по 10 руб. 300 - по 20 руб. 200 - по 100 руб. и 100 - по 200 руб. Каков средний размер выигрыша для купившего один билет?

Решение. Средний выигрыш мы найдём, если общую сумму выигрышей, которая равна 10*400 + 20*300 + 100*200 + 200*100 = 50000 руб, разделим на 1000 (общая сумма выигрышей). Тогда получим 50000/1000 = 50 руб. Но выражение для подсчёта среднего выигрыша можно представить и в следующем виде:

С другой стороны, в данных условиях размер выигрыша является случайной величиной, которая может принимать значения 10, 20, 100 и 200 руб. с вероятностями, равными соответственно 0,4; 0,3; 0,2; 0,1. Следовательно, ожидаемый средний выигрыш равен сумме произведений размеров выигрышей на вероятности их получения.

Пример 2. Издатель решил издать новую книгу. Продавать книгу он собирается за 280 руб., из которых 200 получит он сам, 50 - книжный магазин и 30 - автор. В таблице дана информация о затратах на издание книги и вероятности продажи определённого числа экземпляров книги.

Число проданных экземпляровВероятностьЗатраты
5000,20225000
10000,40250000
20000,25300000
30000,10350000
40000,05400000

Найти ожидаемую прибыль издателя.

Решение. Случайная величина "прибыль" равна разности доходов от продажи и стоимости затрат. Например, если будет продано 500 экземпляров книги, то доходы от продажи равны 200*500=100000, а затраты на издание 225000 руб. Таким образом, издателю грозит убыток размером в 125000 руб. В следующей таблице обобщены ожидаемые значения случайной величины - прибыли:

ЧислоПрибыль xiВероятность pixipi
500-1250000,20-25000
1000-500000,40-20000
20001000000,2525000
30002500000,1025000
40004000000,0520000
Всего:1,0025000

Таким образом, получаем математическое ожидание прибыли издателя:

.

Пример 3. Вероятность попадания при одном выстреле p = 0,2. Определить расход снарядов, обеспечивающих математическое ожидание числа попаданий, равное 5.

Решение. Из всё той же формулы математического ожидания, которую мы использовали до сих пор, выражаем x - расход снарядов:

.

Найти математическое ожидание случайной величины самостоятельно, а затем посмотреть решение

Пример 4. Определить математическое ожидание случайной величины x числа попаданий при трёх выстрелах, если вероятность попадания при каждом выстреле p = 0,4.

Подсказка: вероятность значений случайной величины найти по формуле Бернулли.

Посмотреть правильное решение и ответ.

Свойства математического ожидания

Рассмотрим свойства математического ожидания.

Свойство 1. Математическое ожидание постоянной величины равно этой постоянной:

Свойство 2. Постоянный множитель можно выносить за знак математического ожидания:

Свойство 3. Математическое ожидание суммы (разности) случайных величин равно сумме (разности) их математических ожиданий:

Свойство 4. Математическое ожидание произведения случайных величин равно произведению их математических ожиданий:

Свойство 5. Если все значения случайной величины X уменьшить (увеличить) на одно и то же число С, то её математическое ожидание уменьшится (увеличится) на то же число:

Когда нельзя ограничиваться только математическим ожиданием

В большинстве случаев только математическое ожидание не может в достаточной степени характеризовать случайную величину.

Пусть случайные величины X и Y заданы следующими законами распределения:

Значение XВероятность
-0,1
0,1
-0,01
0,2
0
0,4
0,01
0,2
0,1
0,1
Значение YВероятность
-20
0,3
-10
0,1
0
0,2
10
0,1
20
0,3

Математические ожидания этих величин одинаковы - равны нулю:

Однако характер распределения их различный. Случайная величина X может принимать только значения, мало отличающиеся от математического ожидания, а случайная величина Y может принимать значения, значительно отклоняющиеся от математического ожидания. Аналогичный пример: средняя заработная плата не даёт возможности судить об удельном весе высоко- и низкооплачиваемых рабочих. Иными словами, по математическому ожиданию нельзя судить о том, какие отклонения от него, хотя бы в среднем, возможны. Для этого нужно найти дисперсию случайной величины.

Дисперсия дискретной случайной величины

Дисперсией дискретной случайной величины X называется математическое ожидание квадрата отклонения её от математического ожидания:

Средним квадратическим отклонением случайной величины X называется арифметическое значение квадратного корня её дисперсии:

.

Пример 5. Вычислить дисперсии и средние квадратические отклонения случайных величин X и Y, законы распределения которых приведены в таблицах выше.

Решение. Математические ожидания случайных величин X и Y, как было найдено выше, равны нулю. Согласно формуле дисперсии при Е(х)=Е(y)=0 получаем:

Тогда средние квадратические отклонения случайных величин X и Y составляют

,

.

Таким образом, при одинаковых математических ожиданиях дисперсия случайной величины X очень мала, а случайной величины Y - значительная. Это следствие различия в их распределении.

Пример 6. У инвестора есть 4 альтернативных проекта инвестиций. В таблице обобщены данные об ожидаемой прибыли в этих проектах с соответствующей вероятностью.

Проект 1Проект 2Проект 3Проект 4
500, P=11000, P=0,5500, P=0,5500, P=0,5
0, P=0,51000, P=0,2510500, P=0,25
0, P=0,259500, P=0,25

Найти для каждой альтернативы математическое ожидание, дисперсию и среднее квадратическое отклонение.

Решение. Покажем, как вычисляются эти величины для 3-й альтернативы:

.

.

В таблице обобщены найденные величины для всех альтернатив.

Проект 1Проект 2Проект 3Проект 4
μ500500500500
σ²025001250500000
σ05003547071

У всех альтернатив одинаковы математические ожидания. Это означает, что в долгосрочном периоде у всех - одинаковые доходы. Стандартное отклонение можно интерпретировать как единицу измерения риска - чем оно больше, тем больше риск инвестиций. Инвестор, который не желает большого риска, выберет проект 1, так как у него наименьшее стандартное отклонение (0). Если же инвестор отдаёт предпочтение риску и большим доходам в короткий период, то он выберет проект наибольшим стандартным отклонением - проект 4.

Свойства дисперсии

Приведём свойства дисперсии.

Свойство 1. Дисперсия постоянной величины равна нулю:

.

Свойство 2. Постоянный множитель можно выносить за знак дисперсии, возводя его при этом в квадрат:

.

Свойство 3. Дисперсия случайной величины равна математическому ожиданию квадрата этой величины, из которого вычтен квадрат математического ожидания самой величины:

,

где .

Свойство 4. Дисперсия суммы (разности) случайных величин равна сумме (разности) их дисперсий:

Пример 7. Известно, что дискретная случайная величина X принимает лишь два значения: −3 и 7. Кроме того, известно математическое ожидание: E(X) = 4. Найти дисперсию дискретной случайной величины.

Решение. Обозначим через p вероятность, с которой случайная величина принимает значение x1 = −3. Тогда вероятностью значения x2 = 7 будет 1 − p. Выведем уравнение для математического ожидания:

E(X) = x1p + x2(1 − p) = −3p + 7(1 − p) = 4,

откуда получаем вероятности: p = 0,3 и 1 − p = 0,7.

Закон распределения случайной величины:

X−37
p0,30,7

Дисперсию данной случайной величины вычислим по формуле из свойства 3 дисперсии:

D(X) = 2,7 + 34,3 − 16 = 21.

Найти математическое ожидание случайной величины самостоятельно, а затем посмотреть решение


Пример 8. Дискретная случайная величина X принимает лишь два значения. Большее из значений 3 она принимает с вероятностью 0,4. Кроме того, известна дисперсия случайной величины D(X) = 6. Найти математическое ожидание случайной величины.

Посмотреть правильное решение и ответ.


Пример 9. В урне 6 белых и 4 чёрных шара. Из урны вынимают 3 шара. Число белых шаров среди вынутых шаров является дискретной случайной величиной X. Найти математическое ожидание и дисперсию этой случайной величины.

Решение. Случайная величина X может принимать значения 0, 1, 2, 3. Соответствующие им вероятности можно вычислить по правилу умножения вероятностей. Закон распределения случайной величины:

X0123
p1/303/101/21/6

Отсюда математическое ожидание данной случайной величины:

M(X) = 3/10 + 1 + 1/2 = 1,8.

Дисперсия данной случайной величины:

D(X) = 0,3 + 2 + 1,5 − 3,24 = 0,56.

Математическое ожидание и дисперсия непрерывной случайной величины

Для непрерывной случайной величины механическая интерпретация математического ожидания сохранит тот же смысл: центр массы для единичной массы, распределённой непрерывно на оси абсцисс с плотностью f(x). В отличие от дискретной случайной величиной, у которой аргумент функции xi изменяется скачкообразно, у непрерывной случайной величины аргумент меняется непрерывно. Но математическое ожидание непрерывной случайной величины также связано с её средним значением.

Чтобы находить математическое ожидание и дисперсию непрерывной случайной величины, нужно находить определённые интегралы. Если дана функция плотности непрерывной случайной величины, то она непосредственно входит в подынтегральное выражение. Если дана функция распределения вероятностей, то, дифференцируя её, нужно найти функцию плотности.

Арифметическое среднее всех возможных значений непрерывной случайной величины называется её математическим ожиданием, обозначаемым или .

Математическое ожидание непрерывной случайной величины Х, плотностью вероятности которой является функция f(x), находится как величина интеграла

,

если он сходится абсолютно.

Дисперсией непрерывной случайной величины называется величина интеграла

,

если он сходится.

Среднее квадратичное отклонение непрерывной случайной величины определяется как арифметическое значение квадратного корня из дисперсии.


Найти математическое ожидание и дисперсию непрерывной случайной величины самостоятельно, а затем посмотреть решение

Это наиболее простой пример, так как функция распределения вероятностей дифференцируется и интегралы находятся в нём весьма просто. Поэтому пример предлагается для самостоятельного решения.

Пример 10. Дана функция распределения вероятностей непрерывной случайной величины:

Найти математическое ожидание и дисперсию непрерывной случайной величины.

Посмотреть правильное решение и ответ.


Пример 11. Дана функция распределения вероятностей непрерывной случайной величины:

Найти математическое ожидание и дисперсию непрерывной случайной величины.

Решение. Найдём функцию плотности вероятностей случайной величины. Дифференцируя функцию F(x):

Таким образом, функция плотности:

Математическим ожиданием данной непрерывной случайной величины будет следующий интеграл:

.

Этот интеграл найдём, интегрируя по частям. Для этого ведём следующие обозначения:

Таким образом, находим математическое ожидание:

Дисперсией непрерывной случайной величины будет следующий интеграл:

.

Его также найдём по частям. Введём обозначения:

.

Тогда

Вновь интегрируем по частям. Вводим обозначения:

И находим дисперсию данной непрерывной случайной величины:

Пример 12. Дана непрерывная случайная величина. Её плотность вероятности при и при остальных значениях x. Найти её математическое ожидание и дисперсию.

Решение. Сначала определим параметр с. Разбивая отрезок интегрирования на части, получаем

так как остальные два интеграла равны нулю вследствие равенства нулю плотности вероятности на этих интервалах. Следовательно,

,

откуда .

При находим математическое ожидание искомой случайной величины:

(пределы интегрирования 0 и 10 установлены по тем же соображениям, что и при нахождении параметра с). Дисперсию вычисляем при a=5 и f(x)=0,1:

Начало темы "Теория вероятностей"