"Чистая"
и прикладная математика

Распределение Пуассона дискретной случайной величины

Распределение Пуассона: формула вероятности редких событий

Распределение Пуассона - случай биномиального распределения, когда число испытаний n достаточно большое, а вероятность p события A мала ().

Распределение Пуассона называют также распределением редких событий. Например, рождение за год трёх или четырёх близнецов, тот же закон распределения имеет число распавшихся в единицу времени атомов радиоактивного вещества и др.

Вероятность наступления редких событий вычисляется по формуле Пуассона:

,

где m число наступления события A;

- среднее значение распределения Пуассона;

e=2,7183 - основание натурального логарифма.

Закон Пуассона зависит от одного параметра - λ (лямбда), смысл которого в следующем: он является одновременно математическим ожиданием и дисперсией случаной величины, распределённой по закону Пуассона.

Условия возникновения распределения Пуассона

Рассмотрим условия, при которых возникает распределение Пуассона.

Во-первых, распределение Пуассона является предельным для биномиального распределения, когда число опытов n неограниченно увеличивается (стремится к бесконечности) и одновременно вероятность p успеха в одном опыте неограниченно уменьшается (стремится к нулю), но так, что их произведение np сохраняется в пределе постоянным и равным λ (лямбде):

.

В математическом анализе доказано, что распределение Пуассона с параметром λ = np можно приближенно применять вместо биномиального, когда число опытов n очень велико, а вероятность p очень мала, то есть в каждом отдельном опыте событие A появляется крайне редко.

Во-вторых, распределение Пуассона имеет место, когда есть поток событий, называемым простейшим (или стационарным пуассоновским потоком). Потоком событий называют последовательность таких моментов, как поступление вызовов на коммуникационный узел, приходы посетителей в магазин, прибытие составов на сортировочную горку и тому подобных. Пуассоновский поток обладает следующими свойствами:

  • стационарность: вероятность наступления m событий в определённый период времени постоянна и не зависит от начала отсчёта времени, а зависит только от длины участка времени;
  • ординарность: вероятность попадания на малый участок времени двух или более событий пренебрежимо мала по сравнению с вероятностью попадания на него одного события;
  • отсутствие последствия: вероятность наступления m событий в определённый период времени не зависит от того, сколько событий наступило в предыдущий период.

Характеристики случайной величины, распределённой по закону Пуассона

Характеристики случайной величины, распределённой по закону Пуассона:

математическое ожидание ;

стандартное отклонение ;

дисперсия .

Распределение Пуассона и расчёты в MS Excel

Вероятность распределения Пуассона P(m) и значения интегральной функции F(m) можно вычислить при помощи функции MS Excel ПУАССОН.РАСП. Окно для соответствующего расчёта показано ниже (для увеличения нажать левой кнопкой мыши).

окно ms excel для расчёта распределения пуассона

MS Excel требует ввести следующие данные:

  • x - число событий m;
  • среднее;
  • интегральная - логическое значение: 0 - если нужно вычислить вероятность P(m) и 1 - если вероятность F(m).

Решение примеров с распределением Пуассона

Пример 1. Менеджер телекоммуникационной компании решил рассчитать вероятность того, что в некотором небольшом городе в течении пяти минут поступят 0, 1, 2, ... вызовов. Выбраны случайные интервалы в пять минут, подсчитано число вызовов в каждый их интервалов и рассчитано среднее число вызовов: .

Вычислить вероятность того, что в течении пяти минут поступят 6 вызовов.

Решение. По формуле Пуассона получаем:

Тот же результат получим, используя функцию MS Excel ПУАССОН.РАСП (значение интегральной величины - 0):

P(6) = ПУАССОН.РАСП(6; 4,8; 0) = 0,1398.

Вычислим вероятность того, что в течение пяти минут поступят не более 6 вызовов (значение интегральной величины - 1):

P(≤6) = ПУАССОН.РАСП(6; 4,8; 1) = 0,7908.

Решить пример самостоятельно, а затем посмотреть решение

Пример 2. Производитель отправил в некоторый город 1000 проверенных, то есть исправных телевизоров. Вероятность того, что при транспортировке телевизор выйдет из строя, равна 0,003. То есть в этом случае действует закон распределения Пуассона. Найти вероятность того, что из всех доставленных телевизоров неисправными будут: 1) два телевизора; 2) менее двух телевизоров.

Правильное решение и ответ.

Продолжаем решать примеры вместе

Пример 3. В центр звонков клиентов поступает поток звонков с интенсивностью 0,8 звонков в минуту. Найти вероятность того, что за 2 минуты: а) не придёт ни одного звонка; б) придёт ровно один звонок; в) придёт хотя бы один звонок.

Решение. Случайная величина X - число звонков за 2 минуты с параметром - распределена по закону Пуассона. У нас есть всё, чтобы вычислить требуемые в условии задачи вероятности:

а) (так как 0! = 1).

б) .

в) .

Пример 4. Поток грузовых железнодорожных составов, прибывающих на сортировочную горку, имеет интенсивность 4 состава в час. Найти вероятности того, что за полчаса на горку прибудет: а) ровно один состав; б) хотя бы один состав; в) не менее трёх составов.

Решение. Случайная величина X - число составов за 0,5 часа с параметром - распределена по закону Пуассона. Вычисляем требуемые в условии задачи вероятности:

а) .

б) .

в) .

Назад<<<ЛистатьВперёд>>>
Начало темы "Теория вероятностей"