"Чистая"
и прикладная математика

Непрерывная случайная величина, функция распределения и плотность вероятности

Определение непрерывной случайной величины и её связь с вероятностью

Случайной величиной называется переменная, которая может принимать те или иные значения в зависимости от различных обстоятельств, и случайная величина называется непрерывной, если она может принимать любое значение из какого-либо ограниченного или неограниченного интервала. Для непрерывной случайной величины невозможно указать все возможные значения, поэтому обозначают интервалы этих значений, которые связаны с определёнными вероятностями.

Примерами непрерывных случайных величин могут служить: диаметр детали, обтачиваемой до заданного размера, рост человека, дальность полёта снаряда и др.

Так как для непрерывных случайных величин функция F(x), в отличие от дискретных случайных величин, нигде не имеет скачков, то вероятность любого отдельного значения непрерывной случайной величины равна нулю.

Таким образом, для непрерывной случайной величины бессмысленно говорить о распределении вероятностей между её значениями: каждое из них имеет нулевую вероятность. Однако в некотором смысле среди значений непрерывной случайной величины есть "более и менее вероятные". Например, вряд ли у кого-либо возникнет сомнение, что значение случайной величины - роста наугад встреченного человека - 170 см - более вероятно, чем 220 см, хотя и одно, и другое значение могут встретиться на практике.

Функция распределения непрерывной случайной величины и плотность вероятности

В качестве закона распределения, имеющего смысл только для непрерывных случайных величин, вводится понятие плотности распределения или плотности вероятности. Подойдём к нему путём сравнения смысла функции распределения для непрерывной случайной величины и для дискретной случайной величины.

Итак, функцией распределения случайной величины (как дискретной, так и непрерывной) или интегральной функцией называется функция , которая определяет вероятность, что значение случайной величины X меньше или равно граничному значению х.

Для дискретной случайной величины в точках её значений x1x2, ..., xi,... сосредоточены массы вероятностей p1p2, ..., pi,..., причём сумма всех масс равна 1. Перенесём эту интерпретацию на случай непрерывной случайной величины. Представим себе, что масса, равная 1, не сосредоточена в отдельных точках, а непрерывно "размазана" по оси абсцисс Оx с какой-то неравномерной плотностью. Вероятность попадания случайной величины на любой участок Δx будет интерпретироваться как масса, приходящаяся на этот участок, а средняя плотность на этом участке - как отношение массы к длине. Таким образом, мы ввели важное понятие теории вероятностей: плотность распределения.

Плотностью вероятности f(x) непрерывной случайной величины называется производная её функции распределения:

.

Зная функцию плотности, можно найти вероятность того, что значение непрерывной случайной величины принадлежит закрытому интервалу [ab]:

вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала [ab], равна определённому интегралу от её плотности вероятности в пределах от a до b:

или

.

Из этого получено, что

Интеграл в этом равенстве выражает вероятность того, что случайная величина примет какое-либо значение из интервала . Но это событие достоверное, а поэтому его вероятность равна единице.

Плотность распределения f(x), как и функция распределения F(x), является одной из форм закона распределения, но в отличие от функции распределения, она не универсальна: плотность распределения существует только для непрерывных случайных величин.

Пример 1. Плотность вероятности непрерывной случайной величины X задана равенством , при этом . Найти коэффициент А, вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала ]0, 5[, функцию распределения непрерывной случайной величины X.

Решение. По условию приходим к равенству

.

Но

Следовательно, , откуда . Итак,

.

Теперь находим вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала ]0, 5[:

Теперь получим функцию распределения данной случайной величины:

Пример 2. Найти плотность вероятности непрерывной случайной величины X, которая принимает только неотрицательные значения, а её функция распределения .

Решение. По определению плотности вероятности получаем

при и при , поскольку F(x) для этих значений x постоянна (равна нулю).

График плотности вероятности непрерывной случайной величины называется её кривой распределения (рис. ниже).

Площадь фигуры (на рисунке заштрихована), ограниченной кривой, прямыми, проведёнными из точек a и b перпендикулярно оси абсцисс, и осью Ох, графически отображает вероятность того, что значение непрерывной случайной величины Х находится в пределах от a до b.

Из этого выводятся следующие свойства функции плотности вероятности:

  • значение функции f(x) положительное число, которое за пределами существования распределения равно нулю;
  • площадь фигуры, которую ограничивают график функции f(x) и ось Ох, равна одной единице: .

Пример 3. Плотность распределения непрерывной случайной величины задана формулой:

(при x > 0)

(a - положительный коэффициент).

1) найти функцию распределения непрерывной случайной величины;

2) найти вероятность того, что непрерывная случайная величина примет значение, лежащее между 1 и 2.

Решение.

1) При x < 0 f(x) = 0, значит . При x > 0 . Первый интеграл равен нулю. Второй . Итак, функция распределения данной непрерывной случайной величины имеет вид:

2) вероятность попадания непрерывной случайной величины на участок между 1 и 2 вычислим как приращение функции распределения на этом участке:

Пример 4. Непрерывная случайная величина имеет плотность

при .

1) найти вероятность попадания непрерывной случайной величины на участок от 0 до π/4;

2) функцию распределения непрерывной случайной величины.

Решение.

1) находим искомую вероятность:

.

2) находим функцию распределения непрерывной случайной величины:

Пример 5. Плотность распределения непрерывной случайной величины задана формулой

.

Найти вероятность попадания непрерывной случайной величины на участок (-1; +1)

Решение.

.

Начало темы "Теория вероятностей"