"Чистая"
и прикладная математика

Формула Байеса: теория и примеры решения задач

Формула Байеса: теория

Следствием правила умножения и формулы полной вероятности является формула Байеса, называемая также формулой гипотез.

Представим себе следующую ситуацию. До опыта о его услових можно было сделать ряд гипотез (в литературе можно также встретить их обозначение не буквой B, а буквой H), несовместных и образующих полную группу.

Вероятности гипотез до опыта (называемые также априорными вероятностями) заданы и равны

.

Теперь предположим, что опыт произведён и в его результате появилось событие A.

Как нужно пересмотреть вероятности гипотез с учётом этого факта?

Формула Байеса позволяет найти вероятность каждой из гипотез о том, в результате какого из событий, образующих полную систему, наступило событие A (или как часто говорят, найти апостериорные вероятности).

Поэтому формула Байеса представляет собой отношение произведения вероятности одного из событий системы на условную вероятность этого события относительно соответствующего события системы к полной вероятности наступления события A с учётом всех событий системы.

То есть, по формуле Байеса вероятность, как и в самых простых случаях, вычисляется как отношение "одного ко всем":

формула байеса в наиболее общем виде.

Видим, что знаменатель в этой формуле - ничто иное, как полная вероятность события A, а числители для каждого отдельного случая равны первому, второму, и так далее до n-го слагаемому суммы, находящейся в знаменателе.

Формула Байеса может быть также записана в виде

формула байеса в альтернативной форме.

Формула Байеса: примеры решения задач

Пример 1. Имеются три урны; в первой 3 белых шара и 1 чёрный, во второй - 2 белых шара и 3 чёрных, в третьей - три белых шара. Некто подходит наугад к одной из урн и вынимает из неё один шар. Этот шар оказался белым. Найти послеопытные (апостериорные) вероятности того, что этот шар вынут из первой, второй, третьей урны.

Решение. Гипотезы:

- выбрана первая урна;

- выбрана вторая урна;

- выбрана третья урна.

Так как урна выбирается наугад, то априорные вероятности гипотез раны:

.

В результате опыта появилось событие A - из выбранной урны вынут белый шар.

Условные вероятности события A относительно каждой из гипотез:

, , .

Применяя формулу Байеса, находим апостериорные вероятности гипотез:

;

;

.

Пример 2. Пример с теми же лампочками, что и в примере 2. Пусть количество и качество электролампочек, поставляемых в магазины некоторого района, определены условиями примера 2. Купленная лампочка оказалась стандартной. Пользуясь формулой Байеса, найти вероятности гипотез о том, что лампочка была изготовлена на первом заводе, на втором, на третьем.

Решение. Итак, для каждой из гипотез в числителе должно быть произведение вероятности одного из событий системы на условную вероятность этого события относительно соответствующего события системы, а в знаменателе - полная вероятность собыия A.

Вероятность того, что купленная лампочка изготовлена на первом заводе и стандартна:
.

Вероятность того, что купленная лампочка изготовлена на втором заводе и стандартна:
.

Вероятность того, что купленная лампочка изготовлена на третьем заводе и стандартна:
.

Вычисляя по формуле Байеса, получаем:

- вероятность того, что купленная стандартная лампочка изготовлена на первом заводе
;

- вероятность того, что купленная стандартная лампочка изготовлена на втором заводе
;

- вероятность того, что купленная стандартная лампочка изготовлена на третьем заводе
.

Пример 3. До опыта об его условиях можно было сделать четыре гипотезы: , , , с вероятностями, равными, соответственно

;

;

;

.

В результате опыта появилось событие A, которое невозможно при гипотезах , и достоверно при гипотезах , . Найти апостериорные вероятности гипотез.

Решение. Условные вероятности гипотез:

;

.

По формуле Байеса получаем:

;

;

.

Пример 4. Расследуются причины авиационной катастрофы, о которых можно сделать четыре гипотезы: , , , . Согласно статистике вероятности гипотез составляют

;

;

;

.

Осмотр места катастрофы выявляет, что в её ходе произошло событие A - воспламенение горючего. Условные вероятности события A при гипотезах , , , , согласно той же статистике равны

;

;

;

.

Найти апостериорные вероятности гипотез.

Решение. По формуле Байеса получаем:

.

;

;

.

Пример 5. В учреждении три чиновника готовят копии документов. Первый чиновник () обрабатывает 40% всех форм, второй () – 35%, третий () – 25%. У первого чиновника удельный вес ошибок составляет 0,04, у второго – 0,06, у третьего – 0,03. В конце дня, выбрав случайно один из подготовленных документов, руководитель констатировал, что в нём есть ошибка (событие A). Пользуясь формулой Байеса, выяснить, какова вероятность, что ошибку допустил первый чиновник, второй, третий.
Решение. Обозначим события и их вероятности:
: {документ подготовил первый чиновник}
: {документ подготовил второй чиновник}
: {документ подготовил третий чиновник}
A: {в документе допущена ошибка}


Событие

0,40

0,04

0,0160

0,36

0,35

0,06

0,0210

0,47

0,25

0,03

0,0075

0,17

Всего

1,00

-

0,0445

1,00

По формуле Байеса находим:

Итак, вероятность того, что ошибку допустил первый чиновник, составляет 0,36, второй – 0,47, третий – 0,17.