"Чистая"
и прикладная математика

Теоремы сложения и умножения вероятностей: основные задачи

Будут и задачи для самостоятельного решения, к которым можно посмотреть ответы.

Общая постановка задачи: известны вероятности некоторых событий, а вычислить нужно вероятности других событий, которые связаны с данными событиями. В этих задачах возникает необходимость в таких действиях над вероятностями, как сложение и умножение вероятностей.

Например, на охоте проиведены два выстрела. Событие A - попадание в утку с первого выстрела, событие B - попадание со второго выстрела. Тогда сумма событий A и B - попадание с первого или второго выстрела или с двух выстрелов.

Задачи другого типа. Даны несколько событий, например, монета подбрасывается три раза. Требуется найти вероятность того, что или все три раза выпадет герб, или того, что герб выпадет хотя бы один раз. Это задача на умножение вероятностей.

Сложение вероятностей несовместных событий

Сложение вероятностей используется тогда, когда нужно вычислить вероятность объединения или логической суммы случайных событий.

Сумму событий A и B обозначают A + B или A ∪ B. Суммой двух событий называется событие, которое наступает тогда и только тогда, когда наступает хотя бы одно из событий. Это означает, что A + B – событие, которое наступает тогда и только тогда, когда при наблюдении произошло событие A или событие B, или одновременно A и B.

Больше о сути логической суммы можно узнать в соответствующем месте статьи "Булева алгебра (алгебра логики)".

Если события A и B взаимно несовместны и их вероятности даны, то вероятность того, что в результате одного испытания произойдёт одно из этих событий, рассчитывают, используя сложение вероятностей.


Теорема сложения вероятностей. Вероятность того, что произойдёт одно из двух взаимно несовместных событий, равна сумме вероятностей этих событий:

       (3)


Например, на охоте произведены два выстрела. Событие А – попадание в утку с первого выстрела, событие В – попадание со второго выстрела, событие (А + В) – попадание с первого или второго выстрела или с двух выстрелов. Итак, если два события А и В – несовместные события, то А + В – наступление хотя бы одного из этих событий или двух событий.

Можно рассчитать как классические, так и статистические вероятности.


Пример 1. В ящике 30 мячиков одинаковых размеров: 10 красных, 5 синих и 15 белых. Вычислить вероятность того, что не глядя будет взят цветной (не белый) мячик.

Решение. Примем, что событие А – «взят красный мячик», а событие В – «взят синий мячик». Тогда событие - «взят цветной (не белый) мячик». Найдём вероятность события А:

и события В:

События А и В – взаимно несовместные, так как если взят один мячик, то нельзя взять мячики разных цветов. Поэтому используем сложение вероятностей:

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей - на странице "Различные задачи на сложение и умножение вероятностей".


Теорема сложения вероятностей для нескольких несовместных событий. Если события составляют полное множество событий, то сумма их вероятностей равна 1:

Сумма вероятностей противоположных событий также равна 1:

Противоположные события образуют полное множество событий, а вероятность полного множества событий равна 1.

Вероятности противоположных событий обычно обозначают малыми буквами p и q. В частности,

из чего следуют следующие формулы вероятности противоположных событий:

и .


Пример 2. Цель в тире разделена на 3 зоны. Вероятность того что некий стрелок выстрелит в цель в первой зоне равна 0,15, во второй зоне – 0,23, в третьей зоне – 0,17. Найти вероятность того, что стрелок попадет в цель и вероятность того, что стрелок попадёт мимо цели.

Решение: Найдём вероятность того, что стрелок попадёт в цель:

Найдём вероятность того, что стрелок попадёт мимо цели:

 

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей - на странице "Различные задачи на сложение и умножение вероятностей".


Сложение вероятностей взаимно совместных событий

Два случайных события называются совместными, если наступление одного события не исключает наступления второго события в том же самом наблюдении. Например, при бросании игральной кости событием А считается выпадение числа 4, а событием В – выпадение чётного числа. Поскольку число 4 является чётным числом, эти два события совместимы. В практике встречаются задачи по расчёту вероятностей наступления одного из взаимно совместных событий.


Теорема сложения вероятностей для совместных событий. Вероятность того, что наступит одно из совместных событий, равна сумме вероятностей этих событий, из которой вычтена вероятность общего наступления обоих событий, то есть произведение вероятностей. Формула вероятностей совместных событий имеет следующий вид:

           


Поскольку события А и В совместимы, событие А + В наступает, если наступает одно из трёх возможных событий: или АВ. Согласно теореме сложения несовместных событий, вычисляем так:

         (5)

Событие А наступит, если наступит одно из двух несовместных событий:  или АВ. Однако вероятность наступления одного события из нескольких несовместных событий равна сумме вероятностей всех этих событий:

Поэтому

                              (6)

Аналогично:

Поэтому

                             (7)

Подставляя выражения (6) и (7) в выражение (5), получаем формулу вероятности для совместных событий:

             (8)

При использовании формулы (8) следует учитывать, что события А и В могут быть:

  • взаимно независимыми;
  • взаимно зависимыми.

Формула вероятности для взаимно независимых событий:

Формула вероятности для взаимно зависимых событий:

Если события А и В несовместны, то их совпадение является невозможным случаем и, таким образом, P(AB) = 0. Четвёртая формула вероятности для несовместных событий такова:


Пример 3. На автогонках при заезде на первой автомашине вероятность победить , при заезде на второй автомашине . Найти:

  • вероятность того, что победят обе автомашины;
  • вероятность того, что победит хотя бы одна автомашина;

 

Решение.

1) Вероятность того, что победит первая автомашина, не зависит от результата второй автомашины, поэтому события А (победит первая автомашина) и В (победит вторая автомашина) – независимые события. Найдём вероятность  того, что победят обе машины:

2) Найдём вероятность того, что победит одна из двух автомашин:

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей - на странице "Различные задачи на сложение и умножение вероятностей".


Решить задачу на сложение вероятностей самостоятельно, а затем посмотреть решение

Пример 4. Бросаются две монеты. Событие A - выпадение герба на первой монете. Событие B - выпадение герба на второй монете. Найти вероятность события C = A + B.

Посмотреть правильное решение и ответ.

Умножение вероятностей

Умножение вероятностей используют, когда следует вычислить вероятность логического произведения событий.

При этом случайные события должны быть независимыми. Два события называются взаимно независимыми, если наступление одного события не влияет на вероятность наступления второго события.

Логическим произведением двух событий А и В, обозначаемым А ∩ В, называют событие, которое понимают как одновременное наступление событий А и В. Больше о сути логического произведения можно узнать в соответствующем месте статьи "Булева алгебра (алгебра логики)".


Теорема умножения вероятностей для независимых событий. Вероятность одновременного наступления двух независимых событий А и В равна произведению вероятностей этих событий и вычисляется по формуле:

                   (4)


Пример 5. Монету бросают три раза подряд. Найти вероятность того, что все три раза выпадет герб.

Решение. Вероятность того, что при первом бросании монеты выпадет герб , во второй раз , в третий раз . Найдём вероятность того, что все три раза выпадет герб:

Решить задачи на умножение вероятностей самостоятельно, а затем посмотреть решение

Пример 6. Имеется коробка с девятью новыми теннисными мячами. Для игры берут три мяча, после игры их кладут обратно. При выборе мячей игранные от неигранных не отличают. Какова вероятность того, что после трёх игр в коробке не останется неигранных мячей?

Посмотреть правильное решение и ответ.

Пример 7. 32 буквы русского алфавита написаны на карточках разрезной азбуки. Пять карточек вынимаются наугад одна за другой и укладываются на стол в порядке появления. Найти вероятность того, что из букв получится слово "конец".

Посмотреть правильное решение и ответ.

Пример 8. Из полной колоды карт (52 листа) вынимаются сразу четыре карты. Найти вероятность того, что все эти четыре карты будут разных мастей.

Посмотреть правильное решение и ответ.

Пример 9. Та же задача, что в примере 8, но каждая карта после вынимания возвращается в колоду.

Посмотреть правильное решение и ответ.


Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей, а также вычислять произведение нескольких событий - на странице "Различные задачи на сложение и умножение вероятностей".


Вероятность того, что произойдёт хотя бы одно из взаимно независимых событий , можно вычислить путём вычитания из 1 произведения вероятностей противоположных событий , то есть по формуле:


Пример 10. Грузы доставляют тремя видами транспорта: речным, железнодорожным и автотранспортом. Вероятность того, что груз будет доставлен речным транспортом, составляет 0,82, железнодорожным транспортом 0,87, автотранспортом 0,90. Найти вероятность того, что груз будет доставлен хотя бы одним из трёх видов транспорта.

Решение. Найдём вероятности противоположных событий – того, что груз не будет доставлен одним из видов транспорта:

Теперь у нас есть всё, чтобы найти требуемую в условии задачи вероятность того, что груз будет доставлен хотя бы одним из трёх видов транспорта:

Решить задачу на умножение вероятностей самостоятельно, а затем посмотреть решение

Пример 11. Из полной колоды карт (52 карты) вынимают одновременно четыре карты. Событие А - среди вынутых карт будет хотя бы одна бубновая. Событие B - среди вынутых карт будет хотя бы одна червонная. Найти вероятность события C = A + B.

Посмотреть правильное решение и ответ.


Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей, а также вычислять произведение нескольких событий - на странице "Различные задачи на сложение и умножение вероятностей".


Умножение вероятностей взаимно зависимых случайных событий

Если наступление одного события влияет на вероятность наступления второго события, то события называют взаимно зависимыми.

Если события А и В взаимно зависимы, то условной вероятностью называют вероятность события В, принимая, что событие А уже наступило.


Теорема умножения вероятностей взаимно зависимых событий. Вероятность произведения двух событий равна вероятности одного из них, умноженной на условную вероятность другого при наличии первого, то есть вычисляется по формуле:

или


Пример 12. В ящике 26 лотерейных билетов, из которых 3 с выигрышем. Найти вероятности того, что первый билет будет с выигрышем, вероятность того, что второй билет будет с выигрышем при условии, что первого билета уже нет в ящике и вероятность того, что два взятые подряд билета будут с выигрышем.

Решение. Найдём вероятность того, что первый взятый билет будет с выигрышем:

Найдём вероятность того, что второй взятый билет будет с выигрышем при условии, что первого билета уже нет в ящике:

Найдём теперь вероятность того, что оба взятые подряд билеты будут с выигрышем, т.е. вероятность общего наступления двух зависимых событий, которая является произведением вероятности первого события и условной вероятности второго события:

  

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей, а также вычислять произведение нескольких событий - на странице "Различные задачи на сложение и умножение вероятностей".


Назад<<<ЛистатьВперёд>>>