"Чистая"
и прикладная математика

Вычисление тройных интегралов: теория и примеры

Понятие тройного интеграла

Тройные интегралы – это аналог двойного интеграла для функции трёх переменных, заданной как f(M) = f(xyz).

Записывается тройной интеграл так:

.

Здесь V – пространственная (трёхмерная) фигура, ограниченная плоскостями, выражения которых (равенства) даны в задании вычисления тройного интеграла. V называют также замкнутой ограниченной областью трёхмерного пространства.

Вычислить тройной интеграл - значит найти число, равное объёму тела V или, что то же самое - области V.

Практически каждый может понять смысл вычисления тройного интеграла "на своей шкуре". Точнее - "под шкурой", а ещё точнее - по своим органам дыхания - лёгким. Вне зависимости от того, знаете ли вы об этом или не знаете, в лёгких человека свыше 700 миллионов альвеол - пузырьковых образований, оплетённых сетью капилляров. Через стенки альвеол происходит газообмен. Поэтому можно рассуждать так: объём газа в лёкгих, можно представить в виде некоторой компактной области. А состоит этот объём из маленьких объёмов, сосредоточенных в альвеолах. Ключевую роль в этом сравнении играет именно огромное количество альвеол в лёгких: как мы увидим в следующем абзаце, через такое "огромное количество малостей" математически как раз и формулируется понятие тройного интеграла.

Почему именно тройной интеграл служит для нахождения объёма тела V? Пусть область V разбита на n произвольных областей Δvi, причём под этим обозначением подразумевается не только каждая маленькая область, но и её объём. В каждой такой маленькой области выбрана произвольная точка Mi, а f(Mi) - значение функции f(M) в этой точке. Теперь будем максимально увеличивать число таких маленьких областей, а наибольший диаметр Δvi - наоборот, уменьшать. Можем составить интегральную сумму вида

.

Если функция f(M) = f(xyz) непрерывна, то будет существовать предел интегральных сумм вида, указанного выше. Этот предел и называется тройным интегралом.

В этом случае функция f(M) = f(xyz) называется интегрируемой в области V; V - областью интегрирования; x, y, z - переменными интегрирования, dv (или dx dy dz) - элементом объёма.

Вычисление тройного интеграла путём уменьшения кратности

Как и в случае двойных интегралов, вычисление тройных интегралов сводится к вычислению интегралов меньшей кратности.

Рассмотрим трёхмерную область V. Снизу и сверху (то есть по высоте) эта область ограничена поверхностями z = z1(xy) и z = z2(xy). С боковых сторон (то есть по ширине) область ограничена поверхностями y = y1(x) и y = y2(x). И, наконец, по глубине (если Вы смотрите на область в направлении оси Ox) - поверхностями x = a и x = b

Чтобы применять переход к интегралам меньшей кратности, требуется, чтобы трёхмерная область V была правильной. Она правильна тогда, когда прямая, параллельная оси Oz, пересекает границу области V не более чем в двух точках. Правильными трёхмерными областями являются, например, прямоугольный параллелепипед, эллипсоид, тетраэдр. На рисунке ниже - прямоугольный параллелепипед, который встретится нам в первом примере на решение задач.

чертёж прямоугольного параллелепипеда - правильной области, объём которой можно вычислить с помощью тройного интеграла путём непосредственного перехода к последовательности трёх интегралов

Чтобы наглядно представить отличие правильности от неправильности, добавим, что поверхности области по высоте у правильной области не должны быть вогнуты вовнутрь. На рисунке ниже - пример неправильной области V - однополостный гиперболоид, поверхность которого прямая, параллельная оси Oz (красного цвета), пересекает более чем в двух точках.

чертёж однополостного гиперболоида - пример неправильной области, объём которой нельзя вычислить путём непосредственного перехода от тройного интеграла к последовательности трёх интегралов

Мы будем рассматривать только правильные области.

Итак, область V - правильная. Тогда для любой функции f(xyz), непрерывной в области V, справедлива формула

формула сведения тройного интеграла к последовательности определённого интеграла по переменной z и двойного интеграла

Эта формула позволяет свести вычисление тройного интеграла к последовательному вычислению внутреннего определённого интеграла по переменной z (при постоянных x и y) и внешнего двойного интеграла по двумерной области D.

Переходя от двойного интеграла к повторному, получаем следующую формулу для вычисления тройного интеграла:

формула перехода от тройного интеграла к последовательности трёх определённых интегралов

Таким образом, для вычисления тройного интеграла требуется последовательно вычислить три определённых интеграла.

Вычисляются эти интегралы от самого внутреннего (по переменной z) к самому внешнему (по переменной x). Для удобства восприятия последовательности вычислений три "вложенных" интеграла можно записать так:

другая форма записи последовательности трёх определённых интегралов.

Из этой записи уже однозначно видно, что:

  • сначала нужно интегрировать функцию f(xyz) по переменной z, а в качестве пределов интегрирования взять уравнения z = z1(xy) и z = z2(xy) поверхностей ограничивающих область V снизу и сверху;
  • получившийся на предыдущем шаге результат интегрировать по переменной y, а в качестве пределов интегрирования взять уравнения y = y1(x) и y = y2(x) поверхностей, ограничивающих область V с боковых сторон;
  • получившийся на предыдущем шаге результат интегрировать по переменной x, а в качестве пределов интегрирования взять уравнения x = a и x = b поверхностей, ограничивающих область V по глубине.

Пример 1. Пусть от тройного интеграла можно перейти к повторному интегралу

-

последовательности трёх определённых интегралов. Вычислить этот повторный интеграл.

Решение. Вычисление повторного интеграла всегда начинается с последнего интеграла:

.

Вычислим второй интеграл - по переменной y:

.

Теперь вычисляем самый внешний интеграл - по переменной x:

.

Ответ: данный повторный интеграл и соответствующий ему тройной интеграл равен 10.

Пример 2. Вычислить тройной интеграл

,

где V - параллелепипед, ограниченный плоскостями x = − 1, x = + 1, y = 0, y = 1, z = 0, z = 2.

Решение. Пределы интегрирования для всех трёх определённых интегралов однозначно заданы уравнениями поверхностей, ограничивающих параллелепипед. Поэтому сразу сводим данный тройной интеграл к последовательности трёх определённых интегралов:

.

Вычисляем самый внутренний интеграл - по переменной z, считая икс и игрек константами. Получаем:

.

Вычисляем интеграл "в серединке" - по переменной y. Получаем;

.

Теперь вычисляем самый внешний интеграл - по переменной x:

Ответ: данный тройной интеграл равен -2.

Пример 3. Вычислить тройной интеграл

,

где V - пирамида, ограниченная плоскостью x + y + z = 1 и координатными плоскостями x = 0, y = 0, z = 0. Область V проецируется на плоскость xOy в треугольник D, как показано на рисунке ниже.

Решение. Расставим сначала пределы интегрирования. Для интеграла по переменной z нижний предел интегрирования задан однозначно: z = 0. Чтобы получить верхний предел, выразим z из x + y + z = 1. Получаем 1 − x − y. Для интеграла по переменной y нижний предел интегрирования задан однозначно: y = 0. Для получения верхнего предела выразим y из x + y + z = 1, считая при этом, что z = 0 (так как линия расположена в плоскости xOy). Получаем: 1 − x.

Сводим данный тройной интеграл к последовательности трёх определённых интегралов:

.

Вычисляем самый внутренний интеграл - по переменной z, считая икс и игрек константами. Получаем:

.

Вычисляем средний интеграл - по переменной y. Получаем:

Наконец, вычисляем самый внешний интеграл - по переменной x:

Ответ: данный тройной интеграл равен 1/8.

Вычислить тройной интеграл самостоятельно, а затем посмотреть решение

Пример 4. Вычислить тройной интеграл

,

где V - пирамида, ограниченная плоскостью x + y + z = 1 и координатными плоскостями x = 0, y = 0, z = 0.

Посмотреть правильное решение и ответ.

Расстановка пределов интегрирования при переходе к последовательности трёх интегралов

Бывает, что студенты, у которых не вызывает особых трудностей непосредственное вычисление интегралов, не могут освоиться в расстановке пределов интегрирования при переходе от тройного интеграла к последовательности трёх определённых интегралов. В этом деле действительно требуется некоторая натренированность. В первом примере область интегрирования V представляла собой параллелепипед, с которым всё понятно: со всех сторон его ограничивают плоскости, а значит, пределы интегрирования однозначно заданы уравнениями плоскостей. Во втором примере - пирамида: здесь уже требовалось чуть больше подумать и выразить один из пределов из уравнения. А если область V ограничивают не плоские поверхности? Нужно, конечно, определённым образом осмотреть область V.

Начнём с примера "пострашнее", чтобы почувствовать "обстановку, приближенную к боевой".

Пример 5. Расставить пределы интегрирования при переходе от тройного интеграла, в котором область V - эллипсоид

.

чертёж к нахождению объёма эллипсоида путём решения тройного интеграла

Решение. Пусть центр эллипсоида - начало координат, как показано на рисунке выше. Посмотрим на эллипсоид снизу. Снизу его ограничивает поверхность, являющаяся той части поверхности эллипсоида, которая расположена ниже плоскости xOy. Следовательно, нужно выразить из уравнения эллипсоида z и полученное выражение со знаком минус будет нижним пределом интегрирования по переменной z:

.

Теперь посмотрим на эллипсоид сверху. Здесь его ограничивает поверхность, являющаяся той части поверхности эллипсоида, которая расположена выше оси xOy. Следовательно, нужно выразить из уравнения эллипсоида z и полученное выражение будет верхним пределом интегрирования по переменной z:

.

Проекцией эллипсоида на плоскость xOy является эллипсоид. Его уравнение:

.

Чтобы получить нижний предел интегрирования по переменной y, нужно выразить y из уравнения эллипсоида и взять полученное выражение со знаком минус:

.

Для верхнего предела интегрирования по переменной y то же выражение со знаком плюс:

.

Что касается интегрирования по переменной x, то область V ограничена по глубине плоскостями. Следовательно, пределы интегрирования по переменной x можно представить как координаты задней и передней границ области. В случае эллипсоида ими будут взятые с отрицательным и положительным знаками величины длин полуоси a: x1 = − a и x2 = a.

Таким образом, последовательность интегралов для вычисления объёма эллипсоида следующая:

,

где "игрек первое", "игрек второе", "зет первое" и "зет второе" - полученные выше выражения. Если у Вас есть желание и отвага вычислить этот интеграл и, таким образом, объём эллипсоида, то вот ответ: 4πabc/3.

Следующие примеры - не такие страшные, как только что рассмотренный. При этом они предполагают не только расстановку пределов интегрирования, но и вычисление самого тройного интеграла. Проверьте, чему вы научились, следя за решением "страшного" примера. Думать при расстановке пределов всё равно придётся.

Пример 6. Вычислить тройной интеграл

,

если область интегрирования ограничена плоскостями x + y = 1, x + 2y = 4, y = 0, y = 1, z = 1, z = 5.

Решение. "Курортный" пример по сравнению с примером 5, так как пределы интегрирования по "игрек" и "зет" определены однозначно. Но придётся разобраться с пределами интегрирования по "иксу". Проекцией области интегрирования на плоскость xOy является трапеция ABCD.

чертёж к нестандартному осмотру области интегрирования при решении тройного интеграла

В этом примере выгоднее проецировать трапецию на ось Oy, иначе, чтобы вычислить тройной интеграл, на придётся разделить фигуру на три части. В примере 4 мы начинали осмотр области интегрирования снизу, и это обычный порядок. Но в этом примере мы начинаем осмотр сбоку или, если так проще, положили фигуру набок и считаем, что смотрим на неё снизу. Можем найти пределы интегирования по "иксу" чисто алгебраически. Для этого выразим "икс" из первого и второго уравнений, данных в условии примера. Из первого уравения получаем нижний предел 1 − y, из второго - верхний 4 − 2y. Сведём данный тройной интеграл к последовательности трёх определённых интегралов:

.

Внимание! В этом примере самый внешний интеграл - не по переменной "икс", а по переменной "игрек", а "средний" - по переменной "икс"! Здесь мы применили смену порядка интегрирования, с которой ознакомились при изучении двойного интеграла. Это связано с тем, что, как уже говорилось, мы начали осмотр области интегрирования не снизу, а сбоку, то есть спроецировали её не на ось Ox, на на ось Oy.

Вычисляем самый внутренний интеграл - по переменной z, считая икс и игрек константами. Получаем:

.

Вычисляем средний интеграл - по переменной x. Получаем:

.

Наконец, вычисляем самый внешний интеграл - по переменной y:

Ответ: данный тройной интеграл равен 43.

Пример 7. Вычислить тройной интеграл

,

если область интегрирования ограничена поверхностями x = 0, y = 0, z = 2, x + y + z = 4.

Решение. Область V (пирамида MNRP) является правильной. Проекцией области V на плоскость xOy является треугольник AOB.

чертёж области интегрирования - пирамиды - и её проекции для нахождения пределов интегрирования при решении тройного интеграла

Нижние пределы интегрирования по всем переменным заданы в условии примера. Найдём верхний предел интегирования по "иксу". Для этого выразим "икс" из четвёртого уравнения, считая "игрек" равным нулю, а "зет" равным двум. Получаем x = 2. Найдём верхний предел интегирования по "игреку". Для этого выразим "игрек" из того же четвёртого уравнения, считая "зет" равным двум, а "икс" - переменной величиной. Получаем y = 2 − x. И, наконец, найдём верхний предел интегрирования по переменной "зет". Для этого выразим "зет" из того же четвёртого уравнения, считая "игрек" и "зет" переменными величинами. Получаем z = 4 − x − y.

Сведём данный тройной интеграл к последовательности трёх определённых интегралов:

.

Вычисляем самый внутренний интеграл - по переменной z, считая икс и игрек константами. Получаем:

.

Вычисляем средний интеграл - по переменной y. Получаем:

.

Вычисляем самый внешний интеграл - по переменной x и окончательно находим данный тройной интеграл:

Ответ: данный тройной интеграл равен 2.

Замена переменных в тройном интеграле и цилиндрические координаты

Если проекцией области интегрирования на какую-либо из координатных плоскостей является круг или часть круга, то тройной интеграл проще вычислисть, перейдя к цилиндрическим координатам. Цилиндрическая система координат является обобщением полярной системы координат на пространство. В системе цилиндрических координат точка M характеризуется тремя величинами (r, φ, z), где r - расстояние от начала координат до проекции N точки M на плоскость xOy, φ - угол между вектором ON и положительным направлением оси Ox, z - аппликата точки M (рисунок ниже).

чертёж к нахождению тройного интеграла в цилиндрических координатах

Прямоугольные координаты x, y, z с цилиндрическими координатами r, φ, z связывают формулы

x = rcosφ,

y = rsinφ,

z = z.

Для того, чтобы в тройном интеграле перейти к цилиндрическим координатам, нужно подынтегральную функцию выразить в виде функции переменных r, φ, z:

.

То есть переход от прямогольных координат к цилиндрическим осуществляется следующим образом:

.

Тройной интеграл в цилиндрических координатах вычисляется так же как и в декартовых прямоугольных координатах, путём преобразования в последовательность трёх определённых интегралов:

Пример 8. Вычислить тройной интеграл

переходом к цилиндрическим координатам, где V - область, ограниченная поверхностями и .

чертёж к примеру нахождения тройного интеграла в цилиндрических координатах

Решение. Так как область V на плоскость xOy проектируется в круг , то координата φ изменяется в пределах от 0 до 2π, а координата r - от r=0 до r=1. Постоянному значению в пространстве соответствует цилиндр . Рассматривая пересечение этого цилиндра с областью V, получаем изменение ординаты z от z = r² до z = 1. Переходим к цилиндрическим координатам и получаем:

Ответ: данный тройной интеграл равен π/6.

Тройной интеграл в сферических координатах

Если область интегрирования в тройном интеграле представляет собой шар или часть шара, то проще вычислить тройной интеграл в сферических координатах. В сферических координатах точку M характеризуют три величины (ρ, φ, θ), где ρ - расстояние от точки M до начала координат 0, φ - угол между вектором ON и положительным направлением оси Ox (N - проекция точки M на плоскость xOy), θ - угол между вектором OM и положительным направлением оси Oz.

чертёж к нахождению тройного интеграла в сферических координатах

Сферические координаты связаны с прямоугольными декартовыми координатами соотношениями

x = ρsinθcosφ,

y = ρsinθsinφ,

z = ρcosθ.

Элемент объёма в сферических координатах выражается следующим образом:

.

Таким образом, переход от прямоугольных декартовых координат в тройном интеграле к сферическим координатам осуществляется по формуле:

Чтобы вычислить тройной интеграл в сферических координатах, нужно поступить так же, как при вычислениях в прямоугольных декартовых и цилиндрических координатах - перейти к повторным интегралам (последовательности трёх определённых интегралов):

Пример 9. Вычислить тройной интеграл

переходом к сферическим координатам, где V - область, ограниченная неравенствами и .

чертёж к примеру нахождения тройного интеграла в сферических координатах

Решение. Снизу область интегрирования ограничена конической поверхностью , а сверху - сферой . Так как область интегирования представляет собой часть шара, перейдём к сферическим координатам. Перепишем подынтегральную функцию:

Учитывая, что , получаем

Расставим пределы интегрирования и перепишем последний полученный интеграл в виде трёх повторных интегралов. По рисунку видно, что , , . Поэтому

Итак, тройной интеграл вычислен. Так как все три интеграла - независисмые друг от друга, мы смогли интегрировать каждый отдельно и результаты перемножить.

Приложения тройного интеграла

Вычисление объёма тела. Объём области V равен тройному интегралу по этой области, если подынтегральная функция равна 1:

.

Вычисление массы неоднородного тела. Массу неоднородного тела с плотностью ρ = ρ(xyz) можно вычислить по формуле:

.

Статические моменты материального тела. Статические моменты относительно плоскостей xOy, xOz, yOz материального тела с плотностью ρ = ρ(xyz) можно вычислить по формулам:

Моменты инерции материального тела. Моменты инерции относительно плоскостей xOy, xOz, yOz материального тела с плотностью ρ = ρ(xyz) можно вычислить по формулам:

Моменты инерции относительно осей Ox, Oy, Oz определяются по формулам:

Центр тяжести материального тела. Координаты центра массы C(xcyczc) материального тела с плотностью ρ = ρ(xyz) определяются по формулам:

Пример 10. Вычислить объём тела, ограниченного поверхностями , , .

Решение. Одна их поверхностей - - цилиндрическая поверхность (образующая параллельна оси Oz), то есть проекция области на плоскость xOy совпадает с фигурой, которую ограничивает линия , или . Эта линия изображена на рисунке ниже.

чертёж к примеру нахождения объёма тела через тройной интеграл

Таким образом, записываем тройной интеграл в цилиндрических координатах и вычисляем его:

Ответ: объём тела равен 176 единиц объёма.

Кратные и криволинейные интегралы

Поделиться с друзьями