Как найти длину дуги кривой с помощью интеграла
Задачи на вычисление длины дуги кривой - однотипные. Существуют чёткие схемы для решения таких задач по формулам, которые отличаются в зависимости от того, какими и сколькими уравнениями задана кривая. Формулы представляют собой интегралы от корня, под которым в тех или иных сочетаниях присутствуют производные функций, которыми задана кривая. Следовательно, для того, чтобы вычислять длину дуги кривой, требуется уметь вычислять производные и интегралы. При вычислении интегралов возможны типичные трудности, связанные, например, с выбором подходящей подстановки. Эти задачи будем решать в примерах к данному уроку.
Вычисление длины дуги кривой, заданной в прямоугольных координатах
Пусть в прямоугольных координатах на плоскости уравнением y = f(x) задана кривая.
Найдём длину дуги AB этой кривой, заключённой между вертикальными прямыми x = a и x = b (рисунок ниже).

Возьмём на дуге AB точки A, M1, M2, ..., Mi, ..., B с абсциссами x0 = a, x1, x2, ..., xi, ..., b = xn и проведём хорды AM1, M1M2, ..., Mn-1B, длины которых обозначим соответственно через Δs1, Δs2, ..., Δsn. Тогда получим ломаную AM1M2 ... Mn-1B, вписанную в дугу AB. Длина ломаной равна
.
Длиной s дуги AB называется тот предел, к которому стремится длина вписанной ломаной, когда длина её наибольшего звена стремится к нулю:
.
Этот предел интегральной суммы равен определённому интегралу
(1).
Формула выше и есть формула для вычисления дуги кривой.
Пример 1. Найти длину дуги кривой
, если
.
Решение. Находим производную данной функции:
Используем формулу (1), подставляя найденную производную:
Производим подстановку:
Далее находим:
Ответ: длина дуги кривой равна 74.
Пример 2. Найти длину окружности
.
Решение. Вычислим сначала длину четвёртой части окружности, лежащей в первом квадранте. Тогда уравнение дуги будет:
,
откуда находим производную функции:
Используем формулу (1) подставляя в неё производную, получаем:
Ответ: длина всей окружности равна
.
Если в прямоугольных координатах уравнениями z = x(x) и y = y(x) задана пространственная кривая, то длина её дуги вычисляется по формуле:
. (2)
Вычисление длины дуги кривой, заданной параметрически
Найдём теперь длину дуги кривой в том случае, когда кривая задана параметрическими уравнениями:
В этом случае длину дуги кривой следует находить по формуле
(3).
Пример 3. Найти длину дуги кривой, заданной параметрическими уравнениями
если .
Решение. Рассчитаем интервал, в котором будет меняться значение t, если
:
Вычислим производные функций x и y:
Используем формулу (3):
Производим подстановку:
Окончательно находим:
.
Ответ: длина дуги кривой равна 26.
Если параметрическими уравнениями
задана пространственная кривая, то длина её дуги вычисляется по формуле:
. (4)
Пример 4. Найти длину дуги винтовой линии, заданной параметрическими уравнениями
Решение. Вычислим производные функций x, y и z:
Используем формулу (4):
Вычисление длины дуги кривой, заданной в полярных координатах
Пусть кривая задана в полярных координатах:
Длина её дуги вычисляется по формуле:
(5).
Пример 5. Найти длину дуги кривой, заданной в полярных координатах
.

Решение. Вычислим производную функции:
.
Заданная кривая - кардиоида (рисунок выше). Так как она симметрична, вычислим только ту часть длины
дуги, у которой и
и умножим её на 2. Используем формулу (5):
.
Назад<<< | Листать | Вперёд>>> |