"Чистая"
и прикладная математика

Метод интегрирования по частям: объяснение, решение примеров

Суть метода интегрирования по частям

С помощью формулы интегрирования по частям интегрирование не выполняется сразу: нахождение данного интеграла сводится к нахождению другого. Смысл формулы, которая будет приведена ниже, состоит в том, чтобы в результате её применения новый интеграл оказался табличным или хотя бы стал проще первоначального.

Метод интегрирования по частям основан на использовании формулы дифференцирования произведения двух функций:

 (1)

Формула (1) называется формулой интегрирования по частям в неопределённом интеграле.

Так как

то её можно записать в виде

(2)

Для применения формулы интегрирования по частям подынтегральное выражение нужно разбить на два множителя. Один из них обозначается через u, а остальная часть относится ко второму множителю и обозначается через dv. Затем дифференцированием находится du и интегрированием - функция v. При этом за u следует брать такую часть подынтегральной функции, которая при дифференцировании сильно не усложняется, а за dv - такую часть подынтегрального выражения, которая легко интегрируется.

Когда выгодно применять метод интегрирования по частям? Тогда, когда подынтегральная функция содержит:

1) - логарифмические функции, а также обратные тригонометрические функции (с приставкой "arc"), тогда эти функции обозначаются через u;

2) , , - синус, косинус и экспоненту, умноженные на P(x) - произвольный многочлен от икса, тогда эти функции обозначают через dv, а многочлен - через u;

3) , , , , в этом случае интегрирование по частям применяется дважды.

При нахождении интегрированием функции v для неё получается бесконечное множество первообразных функций. Чтобы применить формулу интегрирования по частям, можно взять любую из них, а значит, и ту, которая соответствует произвольной постоянной С, равной нулю. Поэтому при нахождении функции v произвольную постоянную С вводить не следует.

Применяем интегрирование по частям вместе

Пример 1. Найти неопределённый интеграл методом интегрирования по частям:

.

Решение. В подынтегральном выражении - логарифм, который, как мы уже знаем, разумно обозначить через u. Полагаем, что , .

Тогда , .

Находим:

И снова логарифм...

Пример 2.  Найти неопределённый интеграл:

.

Решение. Пусть , .

Логарифм присутствует в квадрате. Это значит, что его нужно дифференцировать как сложную функцию. Находим
,
.

Применяя формулу интегрирования по частям, получаем:

Второй интеграл вновь находим по частям.

Находим изначальный интеграл:

Пример 3.  Найти неопределённый интеграл методом интегрирования по частям:

.

Решение. Арктангенс, как и логарифм, лучше обозначить через u. Итак, пусть , .

Тогда ,
.

Применяя формулу интегрирования по частям, получаем:

Второй интеграл находим методом замены переменной.

Возвращаясь к переменной x, получаем

.

Находим изначальный интеграл:

.

Пример 4. Найти неопределённый интеграл методом интегрирования по частям:


Решение. Экспоненту лучше обозначить через dv. Разбиваем подынтегральное выражение на два множителя. Полагая, что

находим

Пример 5. Найти неопределённый интеграл методом интегрирования по частям:

.

Решение. Пусть , . Тогда , .

Используя формулу интегрирования по частям (1), находим:

Пример 6. Найти неопределённый интеграл методом интегрирования по частям:

.

Решение. Синус, как и экспоненту, удобно обозначить через dv. Пусть , .

Тогда , .

По формуле интегрирования по частям находим:

Применить интегрирование по частям самостоятельно, а затем посмотреть решение

Пример 7. Найти неопределённый интеграл методом интегрирования по частям:

.

Посмотреть правильное решение и ответ.

Пример 8. Найти неопределённый интеграл методом интегрирования по частям:

.

Посмотреть правильное решение и ответ.

Пример 9. Найти неопределённый интеграл методом интегрирования по частям:

.

Посмотреть правильное решение и ответ.

Снова применяем интегрирование по частям вместе

Пример 10. Найти неопределённый интеграл методом интегрирования по частям:

.

Решение. Как и во всех подобных случаях, косинус удобно обозначить через dv. Обозначаем , .

Тогда , .

По формуле интегрирования по частям получаем:

Ко второму слагаемому также применяем интегрирование по частям. Обозначаем , .

Тогда , .

Применив эти обозначения, интегрируем упомянутое слагаемое:

Теперь находим требуемый интеграл:

Среди интегралов, которые можно решить методом интегрирования по частям, есть и такие, которые не входят ни в одну из трёх упомянутых в теоретической части групп, относительно которых из практики известно, что лучше обозначать через u, а что через dv. Поэтому в этих случаях нужно пользоваться соображением удобства, также приведённым в параграфе "Суть метода интегрирования по частям": за u следует брать такую часть подынтегральной функции, которая при дифференцировании сильно не усложняется, а за dv - такую часть подынтегрального выражения, которая легко интегрируется. Последний пример этого урока - решение именно такого интеграла.

Пример 11. Найти неопределённый интеграл методом интегрирования по частям:

.

Решение. Примем как руководство к действию общее соображение относительно обозначений. Обозначаем , .

Тогда , .

По формуле интегрирования по частям получаем:

Начало темы "Интеграл"
Продолжение темы "Интеграл"

Поделиться с друзьями