"Чистая"
и прикладная математика

Метод замены переменной в неопределённом интеграле

Суть метода замены переменной

Во многих случаях подынтегральное выражение не позволяет сразу же найти интеграл по таблице. Тогда введение новой переменной интегрирования помогает свести нахождение данного интеграла к нахождению табличного интеграла. Такой метод называется методом подстановки или методом замены переменной.

Вводится новая переменная, назовём её t. Например,

  • в интеграле можем ввести новую переменную ;
  • в интеграле можем ввести новую переменную ;
  • в интеграле можем ввести новую переменную .

Далее dx определеяем как дифференциал по переменной t. После этого интеграл можно найти по таблице интегралов. Заменив обратно t на функцию от x, находим данный интеграл окончательно.

Прежде чем перейти к подробным решениям примеров, следует привести теорему, в которой обобщаются перечисленные выше действия.

Теорема.  Пусть функция определена и дифференцируема на некотором промежутке Т и пусть Х – множество значений этой функции, на котором определена функция f(x). Тогда, если на множестве Х функция f(x) имеет первообразную, то на множестве Т справедлива формула

                        (1)

Формула (1) называется формулой замены переменной в неопределённом интеграле.

Метод замены переменной обычно применяется, когда подынтегральное выражение представляет собой независимую переменную, умноженную на многочлен от этой переменной, или на тригонометрическую функцию от этой переменной или на степенную функцию (в том числе корень) от этой переменной.

Применяем замену переменной вместе

Надо полагать, вы уже держите перед собой домашние задания и готовы применять к ним приёмы по аналогии с теми, которые мы ниже рассмотрим. При этом не обойтись без преобразований выражений. Для этого потребуется открыть в новых окнах пособия Действия со степенями и корнями и Действия с дробями.

Пример 1.  Найти неопределённый интеграл методом замены переменной:

Решение. Производим замену x − 1 = t; тогда x = t + 1. Отсюда dx = dt. По формуле (1)

(воспользовались табличными интегралами 7, 9 и 10).

Возвращаясь к переменной x, окончательно получаем

Проверить решение задач на неопределённый интеграл можно на калькуляторе неопределённых интегралов онлайн.


Замечание. При замене переменной в неопределённом интеграле иногда более удобно задавать не х как функцию t, а, наоборот, задавать t как функцию от x.

Заметим, что удачный выбор подстановки обычно представляет известные трудности. Для их преодоления необходимо овладеть техникой дифференцирования и хорошо знать табличные интегралы.

Пример 2.  Найти неопределённый интеграл методом замены переменной:

.

Решение. Положим . Отсюда
.
По формуле (1) и, пользуясь табличными интегралом 13, находим

.

Возвращаясь к переменной x, окончательно получаем

Проверить решение задач на неопределённый интеграл можно на калькуляторе неопределённых интегралов онлайн.

Если трудно уследить, куда в процессе решения примера 2 делись и , это признак того, что нужно повторить действия со степенями из элементарной (школьной) математики.

Пример 3.  Найти неопределённый интеграл методом замены переменной:

.

Решение. Положим , откуда и .

Тогда , в свою очередь .

Заменяем переменную и получаем:

,

где степени при t складываются. Продолжаем преобразования и, пользуясь уже упомянутым табличным интегралом 7, получаем:

Приводим дроби к общему знаменателю и возвращаемся к переменной x. Решаем и получаем ответ:

Применить замену переменной самостоятельно, а затем посмотреть решение

Пример 4.  Найти неопределённый интеграл методом замены переменной:

.

Посмотреть правильное решение и ответ.

Пример 5.  Найти неопределённый интеграл методом замены переменной:

.

Посмотреть правильное решение и ответ.

Пример 6.  Найти неопределённый интеграл методом замены переменной:

.

Посмотреть правильное решение и ответ.

Снова применяем замену переменной вместе

Пример 7.  Найти неопределённый интеграл методом замены переменной:

.

Решение. Положим , откуда , , .

Тогда

(не забываем о правиле дифференцирования сложной функции).

Заменяем переменную и получаем:

.

Возвращаясь к переменной х, получаем ответ:

.

Проверить решение задач на неопределённый интеграл можно на калькуляторе неопределённых интегралов онлайн.

Пример 8.  Найти неопределённый интеграл методом замены переменной:

.

Решение. Положим , откуда , .

Заменяем переменную и получаем:

Подставляя вместо t его выражение через x получаем ответ:

Проверить решение задач на неопределённый интеграл можно на калькуляторе неопределённых интегралов онлайн.

Кому лишь смутно понятно или совсем не понятно, как преобразуются выражения в примере 5, пожалуйста, повторите из курса элементарной (школьной) математики действия с корнями, степенями и дробями!

И если вы ещё не открыли в новых окнах пособия Действия со степенями и корнями и Действия с дробями, то сделайте это сейчас!

Пример 9.  Найти неопределённый интеграл методом замены переменной:

.

Решение. Положим , тогда
.

Заменяем переменную и получаем:

Решение с переменной t получено с использованием формулы 21 из таблицы интегралов.

Подставляя вместо t его выражение через x получаем ответ:

.

Проверить решение задач на неопределённый интеграл можно на калькуляторе неопределённых интегралов онлайн.

Назад<<<ЛистатьВперёд>>>
Начало темы "Интеграл"
Продолжение темы "Интеграл"

Поделиться с друзьями