Исследование функций и построение графиков
Опорными точками при исследовании функций и построения их графиков служат характерные точки – точки разрыва, экстремума, перегиба, пересечения с осями координат. С помощью дифференциального исчисления можно установить характерные особенности изменения функций: возрастание и убывание, максимумы и минимумы, направление выпуклости и вогнутости графика, наличие асимптот.
Эскиз графика функции можно (и нужно) набрасывать уже после нахождения асимптот и точек экстремума, а сводную таблицу исследования функции удобно заполнять по ходу исследования.
Обычно используют следующую схему исследования функции.
1. Находят область определения, интервалы непрерывности и точки разрыва функции.
2. Исследуют функцию на чётность или нечётность (осевая или центральная симметрия графика.
3. Находят асимптоты (вертикальные, горизонтальные или наклонные).
4. Находят и исследуют промежутки возрастания и убывания функции, точки её экстремума.
5. Находят интервалы выпуклости и вогнутости кривой, точки её перегиба.
6. Находят точки пересечения кривой с осями координат, если они существуют.
7. Составляют сводную таблицу исследования.
8. Строят график, учитывая исследование функции, проведённое по вышеописанным пунктам.
Пример. Исследовать функцию
и построить её график.
Решение.
1. Область определения функции – вся числовая прямая. Множеством значений данной функции, как и всякой показательной функции, служит интервал ]0, +∞[. Поэтому график функции расположен выше оси Ox,
2. Напомним: из школьного курса известно, что функция y = f(x) называется чётной, если
для всех x, принадлежащих области определения функции.
График чётной функции симметричен относительно оси Oy, так как, по определению, вместе с любой своей точкой (x; y) он содержит и точку (-x; y).
Функция y = f(x) называется нечётной, если
для всех x, принадлежащих области определения функции.
График нечётной функции симметричен относительно начала координат, так как, по определению, вместе с любой своей точкой (x; y) он содержит и точку (-x; -y).
Наша исследуемая функция чётная, так как
её график симметричен относительно оси Oy. Поэтому исследование можно выполнять только для ]0, +∞[.
3. Вертикальных асимптот у графика нет, поскольку функция непрерывна на всей числовой прямой. Горизонтальной асимптотой является ось Ox, так как
Поскольку кривая имеет двустороннюю горизонтальную асимптоту y = 0, у неё не может быть наклонных асиптот.
4. Находим .
Из уравнения
имеем
.
Так как при переходе через значение x = 0 меняет знак с плюса на минус, то функция в точке x = 0 переходит от возрастания к убыванию, а (0; 1) – точка максимума.
Касательная к кривой в этой точке горизонтальна, поскольку
.
5. Находим
Из уравнения
получаем
т.е.
.
Учитывая чётность функции, исследуем знаки в окрестности только точки
.
Следовательно, при x = 1 кривая
меняет выпуклость на вогнутость. Так как
то
-
точка перегиба кривой. Угловой коэффициент касательной к кривой в этой точке
.
Поэтому в точке перегиба касательная образует с осью Ox тупой угол.
6. График не пересекает оси Ox, поскольку он расположен выше неё. Найдём точки пересечения кривой с осью Oy: полагая x=0, имеем
Тем самым получим точку (0; 1) графика, которая совпадает с точкой максимума.
7. Составим сводную таблицу исследования функции, куда внесём все характерные точки и интервалы между ними. Учитывая чётность функции, получаем следующую таблицу:
Особенности графика |
||||
[-1, 0[ |
+ |
- |
Возрастает |
Выпуклый |
0 |
0 |
- |
1 |
(0; 1) – точка максимума |
]0, 1[ |
- |
- |
Убывает |
Выпуклый |
1 |
- |
0 |
|
|
]1, +∞[ |
- |
+ |
Убывает |
Вогнутый |
+∞ |
- |
+ |
|
y = 0 – горизонтальная асимптота |

8. Используя результаты исследования, строим график функции (см. рисунок).
Назад<<< | Листать | Вперёд>>> |
- Что такое производная
- Найти производную: алгоритм и примеры решений
- Производные произведения и частного функций
- Производная суммы дробей со степенями и корнями
- Производные простых тригонометрических функций
- Производная сложной функции
- Производная логарифмической функции
- Дифференциал функции
- Дифференциал сложной функции, инвариантность формы дифференциала
- Уравнение касательной и уравнение нормали к графику функции
- Правило Лопиталя
- Частные производные
- Применение производной к исследованию функций
- Экстремумы функции
- Наименьшее и наибольшее значения функции
- Асимптоты
- Возрастание, убывание и монотонность функции
- Выпуклость и вогнутость графика функции, точки перегиба
- Полное исследование функций и построение графиков
- Функции двух и трёх переменных
- Экстремумы функции двух переменных
- Условные экстремумы и функция Лагранжа