Дифференциальные уравнения Бернулли в примерах решений
Дифференциальным уравнением Бернулли называется уравнение вида
,
где m ≠ 0 и m ≠ 1.
Таким образом, дифференциальное уравнение Бернулли обязательно содержит функцию y в степени, отличной от нуля и единицы.
В случае, если m = 0, уравнение является линейным, а в случае, если m = 1, уравнение является уравнением с разделяющимися переменными.
Дифференциальное уравнение Бернулли можно решить двумя методами.
- Переходом с помощью подстановки к линейному уравнению.
- Методом Бернулли.
Переход от уравнения Бернулли к линейному уравнению.
Уравнение делим на :
,
.
Обозначим .
Тогда
, откуда
. Переходя к новой
переменной, получим уравнение
,
которое является линейным дифференциальным уравнение первого порядка. Его можно решить методом вариации константы Лагранжа или методом Бернулли.
Решение методом Бернулли.
Решение следует искать в виде произведения двух функций y = u ⋅ v. Подставив его в дифференциальное уравнение, получим уравнение
.
Из слагаемых, содержащих функцию u в первой степени, вынесем её за скобки:
.
Приравняв выражение в скобках нулю, то есть
,
получим дифференциальное уравнение с разделяющимися переменными для определения функции v.
Функцию u следует находить из дифференциального уравнения
,
которое также является уравнение с разделяющимися переменными.
Пример 1. Решить дифференциальное уравнение Бернулли
.
Решение. Решим дифференциальное уравнение двумя методами.
1. Переход от уравнения Бернулли к линейному уравнению. Данное уравнение умножим на y³:
.
Введём обозначение , тогда
,
и приходим к уравнению
или
.
Решим его методом Бернулли. В последнее уравнение подставим z = u ⋅ v, z' = u'v + uv':
,
.
Выражение в скобках приравняем нулю и решим полученное дифференциальное уравнение:
Полученную функцию v подставим в уравнение:
Тогда
2. Методом Бернулли. Ищем решение в виде произведения двух функций y = u ⋅ v. Подставив его и y' = u'v + uv' в данное дифференциальное уравнение, получим
Выражение в скобках приравняем нулю и определим функцию v:
Полученную функцию v подставим в уравнение и определим функцию u:
И, наконец, найдём решение данного дифференциального уравнения:
Пример 2. Решить дифференциальное уравнение Бернулли
.
Решение. Это уравнение, в котором m = −1. Применив подстановку y = u ⋅ v, получим
Выражение в скобках приравняем нулю и определим функцию v:
Полученную функцию v подставим в уравнение и определим функцию u:
Таким образом, получаем решение данного дифференциального уравнения:
.
Пример 3. Решить дифференциальное уравнение Бернулли
.
Решение. Это уравнение можно решить, используя подстановку y = u ⋅ v. Получаем
Приравняем нулю выражение в скобках и решим полученное уравнение с разделяющимися переменными:
Подставляем v в данное уравнение и решаем полученное уравнение:
или
Разделим переменные:
и проинтегрируем обе части уравнения:
Далее используем подстановку
:
.
Введём обозначения:
Продолжаем:
Таким образом, получаем функцию u:
.
и решение данного дифференциального уравнения:
Пример 4. Решить задачу Коши для дифференциального уравнения
при условии .
Решение. Перепишем уравнение, перенося в левую сторону линейные слагаемые, а в правую - нелинейные:
.
Это уравнение Бернулли, которое можно решить, используя подстановку y = u ⋅ v, y' = u'v + uv':
Выражение в скобках приравняем нулю и решим дифференциальное уравнение с разделяющимися переменными:
Подставим функцию v в данное уравнение и решим полученное дифференциальное уравнение:
Вычислим каждый интеграл отдельно. Первый:
.
Второй интеграл интегрируем по частям. Введём обозначения:
Решаем:
Приравниваем друг другу найденные значения интегралов и находим функцию u:
Таким образом, общее решение данного дифференциального уравнения:
.
Используем начальное условие, чтобы определить значение константы:
Ищем частное решение, удовлетворяющее начальному условию:
В результате получаем следующее частное решение данного дифференциального уравнения:
.
И напоследок - пример с альтернативным обозначением производных - через дробь.
Пример 5. Решить дифференциальное уравнение Бернулли
.
Решение. Решим это уравнение первым из представленных в теоретической части методом - переходом к линейному уравнению. Разделив данное уравнение почленно на y³, получим
.
Введём новую функцию . Тогда
.
Подставляя эти значения в уравнение, полученное на первом шаге, получим линейное уравнение:
.
Найдём его общий интеграл:
,
.
Подставляя эти значение в полученное линейное уравнение, получаем
или
.
Приравниваем нулю выражение в скобках:
Для определения функции u получаем уравнение
.
Разделяем переменные:
Интегрируем по частям:
Таким образом, общий интеграл данного уравнения
или
.
Назад<<< | Листать | Вперёд>>> |
Поделиться с друзьями