"Чистая"
и прикладная математика

Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами

Основные понятия о линейных дифференциальных уравнениях второго порядка и их решениях

Линейным дифференциальным уравнением второго порядка называется уравнение вида

y'' + p(x)y' + q(x)y = f(x),

где y - функция, которую требуется найти, а p(x), q(x) и f(x) - непрерывные функции на некотором интервале (a, b).

Если правая часть уравнения равна нулю (f(x) = 0), то уравнение называется линейным однородным уравнением. Таким уравнениям и будет в основном посвящена практическая часть этого урока. Если же правая часть уравнения не равна нулю (f(x) ≠ 0), то уравнение называется линейным неоднородным уравнением (смотрите отдельный урок).

В задачах от нас требуется разрешить уравнение относительно y'':

y'' = −p(x)y' − q(x)y + f(x).

Линейные дифференциальные уравнения второго порядка имеют единственное решение задачи Коши.

Линейное однородное дифференциальное уравнение второго порядка и его решение

Рассмотрим линейное однородное дифференциальное уравнение второго порядка:

y'' + p(x)y' + q(x)y = 0.

Если y1(x) и y2(x) - частные решения этого уравнения, то верны следующие высказывания:

1) y1(x) + y2(x) - также является решением этого уравнения;

2) Cy1(x), где C - произвольная постоянная (константа), также является решением этого уравнения.

Из этих двух высказываний следует, что функция

C1y1(x) + C2y2(x)

также является решением этого уравнения.

Возникает справедливый вопрос: не является ли это решение общим решением линейного однородного дифференциального уравнения второго порядка, то есть таким решением, в котором при различных значениях C1 и C2 можно получить все возможные решения уравнения?

Ответ на этот вопрос следуюший: может, но при некотором условии. Это условие о том, какими свойствами должны обладать частные решения y1(x) и y2(x).

И это условие называется условием линейной независимости частных решений.

Теорема. Функция C1y1(x) + C2y2(x) является общим решением линейного однородного дифференциального уравнения второго порядка, если функции y1(x) и y2(x) линейно независимы.

Определение. Функции y1(x) и y2(x) называются линейно независимыми, если их отношение является константой, отличной от нуля:

y1(x)/y2(x) = k; k = const; k ≠ 0.

Однако установить по определению, являются ли эти функции линейно независимыми, часто очень трудоёмко. Существует способ установления линейной независимости с помощью определителя Вронского W(x):

.

Если определитель Вронского не равен нулю, то решения - линейно независимые. Если определитель Вронского равен нулю, то решения - линейно зависимымые.

Пример 1. Найти общее решение линейного однородного дифференциального уравнения .

Решение. Интегрируем дважды и, как легко заметить, чтобы разность второй производной функции и самой функции была равна нулю, решения должны быть связаны с экспонентой, производная которой равна ей самой. То есть частными решениями являются и .

Так как определитель Вронского

не равен нулю, то эти решения линейно независимы. Следовательно, общее решение данного уравнения можно записать в виде

.

Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами: теория и практика

Линейным однородным дифференциальным уравнением второго порядка с постоянными коэффициентами называется уравнение вида

y'' + py' + qy = 0,

где p и q - постоянные величины.

На то, что это уравнение второго порядка, указывает наличие второй производной от искомой функции, а на его однородность - нуль в правой части. Постоянными коэффициентами называются уже упомянутые выше величины.

Чтобы решить линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами, нужно сначала решить так называемое характеристическое уравнение вида

k² + pq + q = 0,

которое, как видно, является обычным квадратным уравнением.

В зависимости от решения характеристического уравнения возможны три различных варианта решения линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами, которые сейчас разберём. Для полной определённости будем считать, что все частные решения прошли проверку определителем Вронского и он во всех случаях не равен нулю. Сомневающиеся, впрочем, могут проверить это самостоятельно.

Корни характеристического уравнения - действительные и различные

Иными словами, . В этом случае решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами имеет вид

.

Пример 2. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет вид , его корни и - вещественные и различные. Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид

.

Пример 3. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет вид , его корни и - вещественные и различные. Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид

.

Корни характеристического уравения - вещественные и равные

То есть, . В этом случае решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами имеет вид

.

Пример 4. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет равные корни . Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид

Пример 5. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет равные корни . Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид

.

Корни характеристического уравнения - комплексные

То есть, , , . В этом случае решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами имеет вид

.

Пример 6. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет комплексные корни и . Соответственно и . Общее решение данного дифференциального уравения имеет вид

.

Пример 7. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет комплексные корни и . Соответственно и . Общее решение данного дифференциального уравения имеет вид

.

Решить линейное однородное дифференциальное уравнение с постоянными коэффициентами самостоятельно, а затем посмотреть решение

Пример 8. Решить линейное однородное дифференциальное уравнение

.

Пример 9. Решить линейное однородное дифференциальное уравнение

.

Посмотреть правильные решения и ответы примеров 8 и 9.

Всё по теме "Дифференциальные уравнения"

Поделиться с друзьями