Производная по направлению, градиент функции: объяснение, примеры
Понятие производной по направлению
Понятие производной по направлению рассматривается для функций двух и трёх переменных. Чтобы понять смысл производной по направлению, нужно сравнить производные по определению
2) функции трёх переменных в нашем случае.
Рассматривая функцию одной переменной, мы выяснили, что на оси Oy отображается приращение функции f(x), соответствующее приращению аргумента x. Если мы имеем дело с функцией трёх переменных, то приращения аргументов x, y, z отображаются на осях Оx, Оy, Оz. Сам собой напрашивается вопрос: а где можно отобразить приращение уже не аргументов, а функции трёх переменных?
И вот ответ на этот вопрос: приращение функции трёх переменных отображается на некоторой прямой, направление которой определяется вектором, произвольно заданным в задаче.
Если рассматривается функция двух или трёх переменных, то два или три измерения задают аргументы, а упомянутая прямая, на которой отображается приращение функции, - это ещё одно измерение и для его акцентирования назовём это измерение не третьим или четвёртым, а нулевым, следуя программистской традиции (в программировании отсчёт чаще начинается не с единицы, а с нуля).
Для того, чтобы перейти к строгому математическому определению производной по направлению, нужно рассмотреть:
1) функцию u = f(M), определённую в окрестности точки M с координатами x, y, z;
2) произвольный вектор l с направляющими косинусами cosα, cosβ, cosγ.

Через точку M проводим прямую, одно из двух возможных направлений которых совпадает с направлением вектора l. На получившейся прямой отметим точку M1, координаты которой образуют суммы координат точки M и приращений соответствующих аргументов функции трёх переменных:
Величину отрезка MM1
можно обозначить .
Функция u = f(M) при этом получит приращение
.
Определение производной по направлению. Предел отношения
при
,
если он существует, называется производной функции u = f(M)
по направлению вектора l и обозначается
, то есть
.
Формула, которой нужно пользоваться для нахождения производной по направлению, следующая:
.
Смысл этой формулы: производная по направлению является линейной комбинацией частных производных, причём направляющие косинусы показывают вклад в производную по направлению соответствующей частной производной.
Примеры нахождения производной по направлению
Пример 1. Найти производную функции
в точке M0(1; 2; 3) по направлению вектора
.
Решение. Найдём частные производные функции в точке M0:
Найдём направляющие косинусы, пользуясь определением скалярного произведения векторов:
Следовательно,
Теперь можем найти производную по направлению данной функции по её формуле:
А сейчас - домашнее задание. В нём дана функция не трёх, а лишь двух переменных, но несколько иначе задан направляющий вектор. Так что придётся вновь повторить векторную алгебру.
Пример 2. Найти производную функции
в точке M0(1; 2) по направлению вектора
, где M1 -
точка с координатами (3; 0).
Вектор, задающий направление производной, может быть дан и в такой форме, как в следующем примере - в виде разложения по ортам координатных осей, но эта хорошо знакомая тема из самого начала векторной алгебры.
Пример 3. Найти производную функции
в точке M0(1; 1; 1) по направлению вектора
.
Решение. Найдём направляющие косинусы вектора
Найдём частные производные функции в точке M0:
Следовательно, можем найти производную по направлению данной функции по её формуле:
.
Градиент функции
Градиент функции нескольких переменных в точке M0 характеризует направление максимального роста этой функции в точке M0 и величину этого максимального роста.
Как найти градиент?
Нужно определить вектор, проекциями которого на оси координат
являются значения частных
производных ,
,
этой функции в соответствующей точке:
.
То есть, должно получиться представление вектора по ортам координатных осей, в котором на каждый орт умножается соответствующая его оси частная производная.
Для градиента функции двух переменных формула короче:
.
Пример 4. Найти градиент функции
в точке
M0(2; 4;).
Решение. Найдём частные производные функции в точке M0:
Следовательно, можем записать искомый градиент данной функции:
.
Поделиться с друзьями
- Что такое производная
- Найти производную: алгоритм и примеры решений
- Производные произведения и частного функций
- Производная суммы дробей со степенями и корнями
- Производные простых тригонометрических функций
- Производная сложной функции
- Производная логарифмической функции
- Уравнение касательной и уравнение нормали к графику функции
- Дифференциал функции
- Дифференциал сложной функции, инвариантность формы дифференциала
- Правило Лопиталя