"Чистая"
и прикладная математика

Производная фукнции, заданной неявно: руководство, примеры

Как найти производную функции, заданной неявно

Будем учиться находить производные функций, заданных неявно. Что значит неявно? Сравним с обычной функцией. Обычная функция задана уравнением вида y=f(x), где игрек, то есть функция, задан некоторым выражением, в котором присутствует икс. Таким образом, из переменных в левой части - только игрек, в правой - только икс. Если же функция задана неявно, то в левой части различные слагаемые с игреком "смешаны" с различными слагаемыми с иксом (или переменной, обозначенной другой буквой). Примеры функций, заданных неявно:

,

,

,

,

.

При этом и икс, и игрек могут быть в различных степенях, а в одном слагаемом могут быть и игрек, и икс.

Если функция задана неявно, то как получить игрек, то есть явную функцию? Просто: выразить игрек через другую переменную, то есть получить в левой части только игрек. А если нужно найти производную функции, заданной неявно, то есть получить в левой части только игрек со штрихом? Нужно сначала найти производные обеих частей уравнения, то есть продифференцировать их. А затем выразить производную игрека через производные других переменных.

Теперь приведенный выше "скелет" решения обрастет "мясом", то есть необходимыми подробностями. Те слагаемые, в которых присутствует только икс, обратятся в обычную производную функции от икса. А слагаемые, в которых присутствуют и икс, и игрек, нужно дифференцировать, пользуясь правилом дифференцирования сложной функции, то есть учитывать, что игрек - это функция от икса. Если совсем просто, то в полученной производной слагаемого с иксом должно получиться: производная функции от игрека, умноженная на производную от игрека. Например, производная слагаемого запишется как , производная слагаемого запишется как . Далее из всего этого нужно выразить этот "игрек штрих" и будет получена искомая производная функции, заданной неявно. Разберём это на примерах.

Решаем задачи вместе

Пример 1. Найти производную функции, заданной неявно:

.

Решение. Дифференцируем обе части уравнения по иксу, считая, что игрек - функция от икса:

.

Отсюда получаем производную, которая требуется в задании:

.

Решение производной функции, заданной неявно, можно проверить на онлайн калькуляторе.

Пример 2. Найти производную функции, заданной неявно:

.

Решение. Дифференцируем обе части уравнения по иксу:

.

Выражаем игрек штрих и - на выходе - производная функции, заданной неявно:

.

Пример 3. Найти производную функции, заданной неявно:

.

Решение. Дифференцируем обе части уравнения по иксу:

.

Выражаем и получаем производную:

.

Решение производной функции, заданной неявно, можно проверить на онлайн калькуляторе.

Пример 4. Найти производную функции, заданной неявно:

.

Решение. Дифференцируем обе части уравнения по иксу:

.

Выражаем и получаем производную:

.

Пример 5. Найти производную функции, заданной неявно:

.

Решение. Переносим слагаемые в правой части уравнение в левую часть и справа оставляем ноль. Дифференцируем обе части уравнения по иксу:

Путь к ответу и в конец сам ответ:

Решить задачи самостоятельно, а затем посмотреть решения

Пример 6. Найти производную функции, заданной неявно:

Правильное решение и ответ.

Пример 7. Найти производную функции, заданной неявно:

Правильное решение и ответ.

Пример 8. Найти производную функции, заданной неявно:

Правильное решение и ответ.

Назад<<<ЛистатьВперёд>>>

Поделиться с друзьями

Производные

Функции несольких переменных