"Чистая"
и прикладная математика

ОСНОВНЫЕ ТЕОРЕМЫ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

Чтобы найти оптимальное решение среди бесчисленного множества допустимых решений системы ограничений в задаче линейного программирования, понадобится ряд теорем, к рассмотрению которых мы и переходим.

Теорема 1. Множество всех допустимых решений системы ограничений задачи линейного программирования является выпуклым.

Множество решений задачи линейного программирования определяется совокупностью линейных ограничений, поэтому такое множество геометрически представляет собой выпуклый многогранник или неограниченную многогранную область, за исключением тех случаев, когда система ограничений несовместна.

О том, что такое выпуклые множества - на уроке Системы линейных неравенств и выпуклые множества точек.

Теорема 2. Если существует, и притом единственное, оптимальное решение задачи линейного программирования, то оно совпадает с одной из угловых точек множества допустимых решений.

Эта теорема позволяет сделать вывод, что поиски оптимального решения можно ограничить перебором конечного числа угловых точек. Однако для отыскания угловых точек требуется построение области решений системы ограничений. Это построение возможно только для двух- или трёхмерного пространства, а в общем случае задача остаётся неразрешимой. Следовательно, нужно располагать каким-то аналитическим методом, позволяющим находить координаты угловых точек. Для этого понадобятся следующие две теоремы.

Теорема 3. Каждому допустимому базисному решению задачи линейного программирования соответствует угловая точка области допустимых решений системы ограничений.

Теорема 4 (обратная). Каждой угловой точке множества допустимых решений системы ограничений соответствует допустимое базисное решение.

Следствие. Если существует, и притом единственное, оптимальное решение задачи линейного программирования, то оно совпадает с одним из допустимых базисных решений системы ограничений.

Справедливость этого утверждения вытекает из теорем 2 и 4.

Итак, оптимум линейной формы нужно искать среди конечного числа допустимых базисных решений. Однако даже в простейших задачах линейного программирования (при небольших значениях m и n) нахождение оптимального решения путём рассмотрения всех базисных решений является крайне трудоёмким процессом, поскольку число базисных решений может быть весьма велико. Поэтому нужна какая-то вычислительная схема, позволяющая осуществлять переход от одного допустимого базисного решения к другому, при котором линейная форма или приблизилась к оптимуму, или, по крайней мере не изменила своего значения. Такой вычислительной схемой является, например, симплекс-метод решения задач линейного программирования.

Нет времени вникать в решение? Можно заказать работу!

Продолжение темы "Линейное программирование"

Графический метод решения задач линейного программирования

Пример задачи линейного программирования: задача использования ресурсов, её графическое решение

Симплекс-метод решения задач линейного программирования: типичный пример и алгоритм

Симплекс-метод решения задач линейного программирования: типичный пример и алгоритм

Симплекс-метод: случай, когда максимум целевой функции - бесконечность

Симплекс-метод: случай, когда система не имеет ни одного решения

Симплекс-метод: случай, когда оптимальное решение - не единственное

Поделиться с друзьями