"Чистая"
и прикладная математика

УСЛОВИЕ СОВМЕСТНОСТИ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ. ТЕОРЕМА КРОНЕКЕРА-КАПЕЛЛИ

Установить, совместна ли система линейных уравнений, с помощью теоремы Кронекера-Капелли часто можно быстрее, чем с помощью метода Гаусса, когда требуется последовательно исключать неизвестные. В ходе доказательства теоремы Кронекера-Капелли также были получены явные формулы для решения системы линейных уравнений, имеющих бесчисленное множество решений. Основана эта теорема на использовании ранга матрицы.

Теорема Кронекера-Капелли о совместности системы. Для того, чтобы система линейных уравнений была совместна, необходимо и достаточно, чтобы ранг матрицы этой системы был равен рангу её расширенной матрицы, то есть чтобы .

Здесь матрица A (матрица системы) - это матрица, составленная из коэффициентов при неизвестных:

В свою очередь матрица В (расширенная матрица) - это матрица, полученная присоединением к матрице системы столбца из свободных членов:

Ранги этих матриц связаны неравенством , при этом ранг матрицы В может быть лишь на одну единицу больше ранга матрицы A.

Теорема о числе решений. Пусть для системы m линейных уравнений с n неизвестными выполнено условие совместности, то есть ранг матрицы из коэффициентов системы равен рангу её расширенной матрицы. Тогда, если ранг матрицы равен числу неизвестных (), то система имеет единственное решение. Если ранг матрицы системы меньше числа неизвестных (), то система имеет бесконечно много решений, а именно: некоторым n - r неизвестным можно придавать произвольные значения, тогда оставшиеся r неизвестных определятся уже единственным образом.

Если ранг матрицы системы линейных уравнений равен числу уравнений, то есть , то система совместна при любых свободных членах. В этом случае ранг расширенной матрицы также равен m, так как ранг матрицы не может быть больше числа её строчек.

В ходе доказательства теоремы Кронекера-Капелли были получены явные формулы для решений системы (в случае её совместности). Если уже известно, что система совместна, то, чтобы найти её решения, необходимо:

1) отыскать в матрице системы A ранга отличный от нуля минор порядка, равного рангу матрицы системы, то есть ранга r;

2) отбросить те уравнения, которые соответствуют строкам матрицы A, не входящим в минор ;

3) члены с коэффициентами, не входящими в , перенести в правую часть, а затем, придавая неизвестным, находящимся в правой части, произвольные значения, определить по формулам Крамера оставшиеся r неизвестных из системы r уравнений с отличным от нуля определителем .

Пример 1. Следуя теореме Кронекера-Капелли, установить, совместна ли система уравнений

Если система совместна, то решить её.

Решение. Вычисляем ранг матрицы этой системы и ранг расширенной матрицы. В обоих случаях он равен 3. Следовательно, система линейных уравнений совместна. Так как ранг матрицы системы меньше числа неизвестных, то система имеет бесконечно много решений: одно неизвестное может быть взято произвольно. Минор

отличен от нуля, поэтому последнее уравнение отбрасываем и неизвестному придаём произвольное значение .

Оставшиеся неизвестные определяются из системы

Решая последнюю систему по формулам Крамера или иным способом, находим

,

,

.

Присоединяя сюда , получаем все решения данной системы линейных уравнений.

Пример 2. Следуя теореме Кронекера-Капелли, установить, совместна ли система уравнений

Если система совместна, то решить её.

Решение. Вычисляем ранг матрицы этой системы:

.

Следовательно, ранг системы равен 3. Определим ранг расширенной матрицы:

.

Это означает, что ранг расширенной матрицы также равен 3. Следовательно, система совместна, а так как число неизвестных равно рангу матрицы системы, то она имеет единственное решение. Для решения можем использовать первые три уравнения:

Решая последнюю систему по формулам Крамера, находим

,

,

.

Нет времени вникать в решение? Можно заказать работу!

К началу страницы

Пройти тест по теме Системы линейных уравнений

Всё по теме "Системы уравнений и неравенств"

Решение систем линейных уравнений методом подстановки и методом сложения

Решение систем линейных уравнений методом Крамера

Решение систем линейных уравнений методом Гаусса

Число уравнений, неизвестных и решений систем линейных уравнений, решаемых методом Гаусса

Решение систем линейных уравнений матричным методом (обратной матрицы)

Системы линейных неравенств и выпуклые множества точек

Начало темы "Линейная алгебра"

Определители

Матрицы

Поделиться с друзьями