"Чистая"
и прикладная математика

ДЕЙСТВИЯ С ДРОБЯМИ

Основное свойство дроби

Сокращение дробей

Приведение дробей к общему знаменателю

Сложение и вычитание дробей

Умножение и деление дробей

Свойства пропорции

Представление рациональной дроби в виде суммы простейших дробей

Основное свойство дроби

Две дроби и называются равными, если .

Например, , так как

Равными также являются дроби и (так как ), и (так как ).

Очевидно, равными являются и дроби и . Это означает, что если числитель и знаменатель данной дроби умножить или разделить на одно и то же натуральное число, то получится дробь, равная данной: .

Это свойство называется основным свойством дроби.

Основное свойство дроби можно использовать для перемены знаков у числителя и знаменателя дроби. Если числитель и знаменатель дроби умножить на -1, то получим . Таким образом, значение дроби не изменится, если одновременно изменить знаки у числителя и знаменателя. Если же изменить знак только у числителя или только у знаменателя, то и дробь изменит свой знак:

;

.

Сокращение дробей

Пользуясь основным свойством дроби, можно заменить данную дробь другой дробью, равной данной, но с меньшим числителем и знаменателем. Такую замену называют сокращением дроби.

Пусть, например, дана дробь . Числа 36 и 48 имеют наибольший общий делитель 12. Тогда

.

В общем случае сокращение дроби возможно всегда, если числитель и знаменатель не являются взаимно простыми числами. Если числитель и знаменатель - взаимно простые числа, то дробь называется несократимой.

На сайте есть калькулятор онлайн для вычисления наибольшего общего делителя и наименьшего общего кратного двух чисел.

Итак, сократить дробь - это значит разделить числитель и знаменатель дроби на общий множитель. Всё вышесказанное применимо и к дробным выражениям, содержащим переменные.

Пример 1. Сократить дробь

.

Решение. Для разложения числителя на множители, представив предварительно одночлен - 5xy в виде суммы - 2xy - 3xy, получим

Для разложения знаменателя на множители используем формулу разности квадратов:

.

Таким образом,

.

Далее, изменяя знаки в числителе и знаменателе дроби, получим

Приведение дробей к общему знаменателю

Пусть даны две дроби и . Они имеют разные знаменатели: 5 и 7. Пользуясь основным свойством дроби, можно заменить эти дроби другими, равными им, причём такими, что у полученных дробей будут одинаковые знаменатели. Умножив числитель и знаменатель дроби на 7, получим

.

Умножив числитель и знаменатель дроби на 5, получим

.

Итак, дроби приведены к общему знаменателю:

.

Но это не единственное решение поставленной задачи: например, данные дроби можно привести также к общему знаменателю 70:

,

и вообще к любому знаменателю, делящемуся одновременно на 5 и 7.

Рассмотрим ещё один пример: приведём к общему знаменателю дроби и . Рассуждая, как в предыдущем примере, получим

,

.

Но в данном случае можно привести дроби к общему знаменателю, меньшему, чем произведение знаменателей этих дробей. Найдём наименьшее общее кратное чисел 24 и 30: НОК(24, 30) = 120.

Так как 120:4=5, то чтобы записать дробь со знаменателем 120, надо и числитель, и знаменатель умножить на 5, это число называется дополнительным множителем. Значит .

Далее, получаем 120:30=4. Умножив числитель и знаменатель дроби на дополнительный множитель 4, получим .

Итак, данные дроби приведены к общему знаменателю.

Наименьшее общее кратное знаменателей этих дробей является наименьшим возможным общим знаменателем.

На сайте есть калькулятор онлайн для вычисления наибольшего общего делителя и наименьшего общего кратного двух чисел.

Для дробных выражений, в которые входят переменные, общим знаменателем является многочлен, который делится на знаменатель каждой дроби.

Пример 2. Найти общий знаменатель дробей и .

Решение. Общим знаменателем данных дробей является многочлен , так как он делится и на , и на . Однако этот многочлен не единственный, который может быть общим знаменателем данных дробей. Им может быть также многочлен , и многочлен , и многочлен и т.д. Обычно берут такой общий знаменатель, что любой другой общий знаменатель делится на выбранный без остатка. Такой знаменатель называется наименьшим общим знаменателем.

В нашем примере наименьший общий знаменатель равен . Получили:

;

.

Нам удалось привести дроби к наименьшему общему знаменателю. Это произошло путём умножения числителя и знаменателя первой дроби на , а числителя и знаменателя второй дроби - на . Многочлены и называются дополнительными множителями, соответственно для первой и для второй дроби.

Сложение и вычитание дробей

Сложение дробей определяется следующим образом:

.

Например,

.

Если b = d, то

.

Это значит, что для сложения дробей с одинаковым знаменателем достаточно сложить числители, а знаменатель оставить прежним. Например,

.

Если же складываются дроби с разными знаменателями, то обычно приводят дроби к наименьшему общему знаменателю, а потом складывают числители. Например,

.

На сайте есть калькулятор онлайн для вычисления наибольшего общего делителя и наименьшего общего кратного двух чисел.

Теперь рассмотрим пример сложения дробных выражений с переменными.

Пример 3. Преобразовать в одну дробь выражение

.

Решение. Найдём наименьший общий знаменатель. Для этого сначала разложим знаменатели на множители:

1) ;

2) ;

3) .

Наименьший общий знаменатель:

Дополнительные множители, на которые умножаются числители дробей:

1) 6;

2) ;

3) .

Таким образом, получаем

.

Далее, раскрывая скобки и выполняя тождественные преобразования, получаем

.

Умножение и деление дробей

Произведение двух дробей и равно дроби, числитель которой равен произведению числителей, а знаменатель - произведению знаменателей, т. е. .

Например,

.

При делении дроби на дробь числитель делимого умножается на знаменатель делителя, а знаменатель делимого - на числитель делителя, т. е. .

Например,

.

Свойства пропорции

1. Произведение крайних членов пропорции равно произведению её средних членов, т. е. если , то .

2. Из пропорции вытекают следующие пропорции: , , , т. е. в пропорции можно менять местами крайние и средние члены или те и другие одновременно.

3. Чтобы найти неизвестный средний (крайний) член пропорции, нужно произведение крайних (средних) членов пропорции разделить на известный средний (крайний) член пропорции: и .

Представление рациональной дроби в виде суммы простейших дробей

В высшей математике это действие с дробями чаще всего применяется при интегрировании рациональных функций. Поэтому оно подробно разобрано в уроке Интегрирование рациональных функций и метод неопределённых коэффициентов.

Нет времени вникать в решение? Можно заказать работу!

К началу страницы

Другие темы в блоке "Школьная математика"

Действия со степенями и корнями

Решение квадратных уравнений

Решение дробных уравнений с преобразованием в квадратное уравнение