"Чистая"
и прикладная математика

НЕПРЕРЫВНОСТЬ ФУНКЦИИ

Примеры и условия непрерывности функции. Непрерывность на промежутке

Основные свойства непрерывных функций

Примеры и условия непрерывности функции. Непрерывность на промежутке

К понятию непрерывной функции математика пришла, изучая в первую очередь различные законы движения. Пространство и время бесконечны, и зависимость, например, пути s от времени t, выраженная законом s = f(t), даёт пример непрерывной функции f(t). Непрерывно изменяется и температура нагреваемой воды, она также является непрерывной функцией от времени: T = f(t). Непрерывна и линия, если её можно начертить, не отрывая карандаш от бумаги. Эта линия и является графиком непрерывной функции.

Графически функция непрерывна в точке , если её график не "разрывается" в этой точке. График такой непрерывной функции - показан на рисунке ниже.

Определение непрерывности функции через предел. Функция является непрерывной в точке при соблюдении трёх условий:

1. Функция определена в точке .

2. Существует предел функции в точке , при этом правый и левый пределы равны: .

3. Предел функции в точке равен значению функции в этой точке:

Если хотя бы одно из этих условий не соблюдено, функция не является непрерывной в точке. При этом говорят, что функция терпит разрыв, а точки на графике, в которых график прерывается, называются точками разрыва функции. График такой функции , терпящей разрыв в точке x=2 - на рисунке ниже.

Пример 1. Функция f(x) определена следующим образом:

Будет ли эта функция непрерывной в каждой из граничных точек её ветвей, то есть в точках x = 0, x = 1, x = 3?

Решение. Проверяем все три условия непрерывности функции в каждой граничной точке. Первое условие соблюдается, так как то, что функция определена в каждой из граничных точек, следует из определения функции. Осталось проверить остальные два условия.

Точка x = 0. Найдём левосторонний предел в этой точке:

.

Найдём правосторонний предел:

.

Предел функции и значение функции в точке x = 0 должны быть найдены при той ветви функции, которая включает в себя эту точку, то есть второй ветви. Находим их:

.

Как видим, предел фукции и значение функции в точке x = 0 равны. Следовательно, функция является непрерывной в точке x = 0.

Точка x = 1. Найдём левосторонний предел в этой точке:

.

Найдём правосторонний предел:

Предел функции и значение функции в точке x = 1 должны быть найдены при той ветви функции, которая включает в себя эту точку, то есть второй ветви. Находим их:

.

Предел фукции и значение функции в точке x = 1 равны. Следовательно, функция является непрерывной в точке x = 1.

Точка x = 3. Найдём левосторонний предел в этой точке:

Найдём правосторонний предел:

Предел функции и значение функции в точке x = 3 должны быть найдены при той ветви функции, которая включает в себя эту точку, то есть второй ветви. Находим их:

.

Предел фукции и значение функции в точке x = 3 равны. Следовательно, функция является непрерывной в точке x = 3.

Таким образом, данная функция является непрерывной в каждой граничной точке.

Непрерывное изменение функции можно определить как изменение постепенное, без скачков, при котором малое изменение аргумента влечёт малое изменение функции .

Проиллюстрируем это непрерывное изменение функции на примере.

Пусть над столом висит на нитке груз. Под действием этого груза нитка растягивается, поэтому расстояние l груза от точки подвеса нити является функцией массы груза m, то есть l = f(m), m≥0.

Если немного изменить массу груза, то расстояние l изменится мало. Таким образом, малым изменениям m соответствуют малые изменения l. Однако если масса груза близка к пределу прочности нити, то небольшое увеличение массы груза может вызвать разрыв нити: расстояние l скачкообразно увеличится и станет равным расстоянию от точки подвеса до поверхности стола. График функции l = f(m) изображён на рисунке. На участке этот график является непрерывной (сплошной) линией, а в точке он прерывается. В результате получается график, состоящий из двух ветвей. Во всех точках, кроме , функция l = f(m) непрерывна, а в точке она имеет разрыв.

Исследование функции на непрерывность может быть как самостоятельной задачей, так и одним из этапов полного исследования функции и построения её графика.

Непрерывность функции на промежутке. Пусть функция y = f(x) определена в интервале ]ab[ и непрерывна в каждой точке этого интервала. Тогда она называется непрерывной в интервале ]ab[. Аналогично определяется понятие непрерывности функции на промежутках вида ]- ∞, b[, ]a, + ∞[, ]- ∞, + ∞[. Пусть теперь функция y = f(x) определена на отрезке [ab]. Разница между интервалом и отрезком: граничные точки интервала не входят в интервал, а граничные точки отрезка входят в отрезок. Здесь следует упомянуть о так называемой односторонней непрерывности: в точке a, оставаясь на отрезке [ab], мы можем приближаться только справа, а к точке b - только слева. Функция называется непрерывной на отрезке [ab], если она непрерывна во всех внутренних точках этого отрезка, непрерывна справа в точке a и непрерывна слева в точке b.

Примером непрерывной функции может служить любая из элементарных функций. Каждая элементарная функция непрерывна на любом отрезке, на котором она определена. Например, функции и непрерывны на любом отрезке [ab], функция непрерывна на отрезке [0b], функция непрерывна на любом отрезке, не содержащем точку a = 2.


Пример 2. Исследовать функцию на непрерывность.

Решение. Проверяем первое условие. Функция не определена в точках - 3 и 3. По меньшей мере одно из условий непрерывности функции на всей числовой прямой не выполняется. Поэтому данная функция является непрерывной на интервалах

.

Пример 3. Определить, при каком значении параметра a непрерывна на всей области определения функция

Решение.
Найдём левосторонний предел функции в точке :

.

Найдём правосторонний предел при :

.

Очевидно, что значение в точке x = 2 должно быть равно ax:

Ответ: функция непрерывна на всей области определения при a = 1,5.

Нет времени вникать в решение? Можно заказать работу!

Пройти тест по теме Производная, дифференциал и их применение

Пройти тест по теме Предел


Пример 4. Определить, при каких значениях параметров a и b непрерывна на всей области определения функция

Решение.
Найдём левосторонний предел функции в точке :

.

Следовательно, значение в точке должно быть равно 1:

.

Найдём левосторонний функции в точке :

.

Очевидно, что значение функции в точке должно быть равно :

Ответ: функция непрерывна на всей области определения при a = 1; b = -3.


Основные свойства непрерывных функций

В математическом анализе доказаны некоторые свойства, которыми обладают непрерывные функции. Приведём важнейшие из этих свойств.

1. Если непрерывная на интервале функция принимает на концах интервала значения разных знаков, то в некоторой точке этого отрезка она принимает значение, равное нулю. В более формальном изложении это свойство дано в теореме, известной как первая теорема Больцано-Коши.

2. Функция f(x), непрерывная на интервале [ab], принимает все промежуточные значения между значениями в концевых точках, то есть, между f(a) и f(b). В более формальном изложении это свойство дано в теореме, известной как вторая теорема Больцано-Коши.

3. Если функция непрерывна на интервале, то на этом интервале она достигает своего наибольшего и своего наименьшего значения, т. е. если m - наименьшее, а M - наибольшее значение функции на интервале [ab], то найдутся на этом отрезке такие точки и , что и . Теорема, в которой изложено это свойство, называется второй теоремой Вейерштрасса.

Пример 5. Используя первое из приведённых выше свойств непрерывных функций, доказать, что уравнение имеет по меньшей мере один вещественный корень в интервале [1; 2].

Решение.

Пусть .

Вычислим значения функции при x = 1 и x = 2.

.

.

Получили, что функция на концах интервала принимает значения разных знаков:
и , т. е.

Следовательно, в интервале [1; 2] существует такое число a, при котором f(a) = 0. То есть, уравнение имеет по меньшей мере один вещественный корень в данном интервале.

Установление непрерывности функции может быть как самостоятельной задачей, так и частью Полного исследования функции и построения графика.

Пример 6. Есть ли у уравнения хотя бы один вещественный корень?

Решение.
Функция определена на интервале .

Вычислим значения функции при x = 0 и .

.

.

Получили
и .

Следовательно, существует такое число a, при котором f(a) = 0. То есть, уравнение имеет по меньшей мере один вещественный корень.

Нет времени вникать в решение? Можно заказать работу!

К началу страницы

Пройти тест по теме Предел

Весь раздел "Исследование функций"