"Чистая"
и прикладная математика

УРАВНЕНИЯ ПЛОСКОСТИ: ОБЩЕЕ, ЧЕРЕЗ ТРИ ТОЧКИ, НОРМАЛЬНОЕ

Плоскость, общее уравнение плоскости

Уравнение плоскости, проходящей через три точки

Нормальное уравнение плоскости. Расстояние от точки до плоскости

Плоскость, общее уравнение плоскости

Чтобы получить общее уравнение плоскости, разберём плоскость, проходящую через заданную точку.

Начиная изучать плоскость в пространстве и её уравнения, будем оперировать декартовой системой координат. Знакомство с декартовой системой координат в пространстве состоялось в одноимённом параграфе раздела "Векторы", рекомендуем его повторить. Также для усвоения материала о плоскости необходимо владеть материалом о скалярном произведении векторов.

Итак, пусть P произвольная плоскость в пространстве. Всякий перпендикулярный ей ненулевой вектор называется вектором нормали к этой плоскости.

Если известна какая-нибудь точка плоскости P и какой-нибудь вектор нормали к ней, то этими двумя условиями плоскость в пространстве вполне определена (через заданную точку можно провести единственную плоскость, перпендикулярную данному вектору). Общее уравнение плоскости будет иметь вид:

Чтобы получить уравнение плоскости, заданной этими условиями, и имеющее приведённый вид, возьмём на плоскости P произвольную точку M с переменными координатами x, y, z. Эта точка принадлежит плоскости только в том случае, когда вектор перпендикулярен вектору (рис. 1), а для этого, согласно условию перпендикулярности векторов, необходимо и достаточно, чтобы скалярное произведение этих векторов было равно нулю, т.е.

.

Вектор задан по условию. Координаты вектора найдём по формуле :

.

Теперь, используя формулу скалярного произведения векторов , выразим скалярное произведение в координатной форме:

. (1)

Так как точка M(x; y; z) выбрана на плоскости произвольно, то последнему уравнению удовлетворяют координаты любой точки, лежащей на плоскости P. Для точки N, не лежащей на заданной плоскости, , т.е. равенство (1) нарушается.

Пример 1. Составить уравнение плоскости, проходящей через точку и перпендикулярной вектору .

Решение. Используя формулу (1), имеем:

,

откуда после преобразований получим

.

Искомое уравнение в примере 1 оказалось выражено общим уравнением первой степени относительно переменных координат x, y, z произвольной точки плоскости.

Итак, уравнение вида

    (2)

называется общим уравнением плоскости.

Пример 2. Построить в прямоугольной декартовой системе координат плоскость, заданную уравнением .

Решение. Для построения плоскости необходимо и достаточно знать какие-либо три её точки, не лежащие на одной прямой, например, точки пересечения плоскости с осями координат. Поэтому, полагая в заданном уравнении x = y = 0, получим z = 6. Следовательно, заданная плоскость пересекает ось Oz в точке A(0; 0; 6). Аналогично, при x = z = 0 получим y = -3, т.е. точку B(0; -3; 0). А при y = z = 0 имеем x = 2, т.е. точку C(2; 0; 0). По трём точкам A(0; 0; 6), B(0; -3; 0) и C(2; 0; 0) строим заданную плоскость.

Решения типичных задач, которые бывают на контрольных работах - в пособии "Задачи на плоскость: параллельность, перпендикулярность, пересечение трёх плоскостей в одной точке".


Рассмотрим теперь частные случаи общего уравнения плоскости. Это случаи, когда те или иные коэффициенты уравнения (2) обращаются в нуль.

1. При D = 0 уравнение определяет плоскость, проходящую через начало координат, так как координаты точки 0(0; 0; 0) удовлетворяют этому уравнению.

2. При A = 0 уравнение определяет плоскость, параллельную оси Ox, поскольку вектор нормали этой плоскости перпендикулярен оси Ox (его проекция на ось Ox равна нулю). Аналогично, при B = 0 плоскость параллельная оси Oy, а при C = 0 плоскость параллельна оси Oz.

3. При A = D = 0 уравнение определяет плоскость, проходящую через ось Ox, поскольку она параллельна оси Ox (A = 0) и проходит через начало координат (D = 0). Аналогично, плоскость проходит через ось Oy, а плоскость через ось Oz.

4. При A = B = 0 уравнение определяет плоскость, параллельную координатной плоскости xOy, поскольку она параллельна осям Ox (A = 0) и Oy (B = 0). Аналогично, плоскость параллельна плоскости yOz, а плоскость - плоскости xOz.

5. При A = B = D = 0 уравнение (или z = 0) определяет координатную плоскость xOz, так как она параллельна плоскости xOy (A = B = 0) и проходит через начало координат (D = 0). Аналогично, уравнение y = 0 в пространстве определяет координатную плоскость xOz, а уравнение x = 0 - координатную плоскость yOz.

Пример 3. Составить уравнение плоскости P, проходящей через ось Oy и точку .

Решение. Уравнение плоскости, проходящей через ось Oy, имеет вид . Для определения коэффициентов A и C воспользуемся тем, что точка принадлежит плоскости P. Поэтому её координаты удовлетворяют написанному выше уравнению плоскости , откуда . Подставив найденное значение A в уравнение , получим

или .

Это и есть искомое уравнение.

Решения типичных задач, которые бывают на контрольных работах - в пособии "Задачи на плоскость: параллельность, перпендикулярность, пересечение трёх плоскостей в одной точке".

Нет времени вникать в решение? Можно заказать работу!

К началу страницы

Пройти тест по теме Прямая и плоскость

Уравнение плоскости, проходящей через три точки

Как уже упоминалось, необходимым и достаточным условием для построения плоскости, кроме одной точки и вектора нормали, являются также три точки, не лежащие на одной прямой.

Пусть даны три различные точки , и , не лежащие на одной прямой. Так как указанные три точки не лежат на одной прямой, векторы и не коллинеарны, а поэтому любая точка плоскости лежит в одной плоскости с точками , и тогда и только тогда, когда векторы , и компланарны, т.е. тогда и только тогда, когда смешанное произведение этих векторов равно нулю.

Используя выражение смешанного произведения в координатах, получим уравнение плоскости

    (3)

После раскрытия определителя это уравнение становится уравнением вида (2), т.е. общим уравнением плоскости.

Пример 4. Составить уравнение плоскости, проходящей через три данные точки, не лежащие на одной прямой:

, ,

и определить частный случай общего уравнения прямой, если такой имеет место.

Решение. По формуле (3) имеем:

Раскрываем определитель по первой строке:

Получили общее уравнение плоскости

или после деления на -2:

.

Это уравнение, в котором A = 0, т.е. оно определяет плоскость, параллельную оси Ox.

Решения типичных задач, которые бывают на контрольных работах - в пособии "Задачи на плоскость: параллельность, перпендикулярность, пересечение трёх плоскостей в одной точке".

Нормальное уравнение плоскости. Расстояние от точки до плоскости

Нормальным уравнением плоскости называется её уравнение, записанное в виде

,

где - направляющие косинусы нормали плоскости, - расстояние от начала координат до плоскости.

Нормалью к плоскости называется вектор, направление которого совпадает с направлением прямой, проведённой через начало координат перпендикулярно данной плоскости. (Есть полная аналогия с нормалью к прямой на плоскости, с той лишь разницей, что нормальное уравнение прямой существует в двух измерениях, а нормальное уравнение плоскости - в трёх).

Пусть M - какая угодно точка пространства. Для нахождения отклонения точки M от плоскости следует в левую часть нормального уравнения плоскости подставить на место x, y и z подставить координаты этой точки.

Это правило позволяет найти и расстояние от точки M до плоскости: расстояние равно модулю отклонения, т.е.

,

так как расстояние не может быть отрицательным числом.

Общее уравнение плоскости

приводится к нормальному виду почленным умножением на нормирующий множитель, определяемый формулой

.

Знак нормирующего множителя берётся противоположным знаку свободного члена в общем уравнении плоскости.

Пример 5. Привести уравнение плоскости к нормальному виду.

Решение. Вычислим нормирующий множитель:

.

Знак нормирующего множителя положительный, то есть, противоположен знаку свободного члена в общем уравнении плоскости. Умножим общее уравнение почленно на нормирующий множитель и получим искомое нормальное уравнение плоскости:

.

Пример 6. Вычислить величину отклонения и расстояния от точки до прямой, если точка задана координатами (-2; -4; 3), а плоскость задана общим уравнением .

Решение. Сначала приведём уравнение плоскости к нормальному виду. Вычислим нормирующий множитель:

.

Знак нормирующего множителя отрицательный, то есть, противоположен знаку свободного члена в общем уравнении плоскости. Умножим общее уравнение почленно на нормирующий множитель и получим искомое нормальное уравнение плоскости:

.

Вычислим отклонение точки от плоскости:

Найдём теперь расстояние от точки до плоскости как модуль отклонения:

Нет времени вникать в решение? Можно заказать работу!

К началу страницы

Пройти тест по теме Прямая и плоскость

Всё по теме "Прямая и плоскость"