"Чистая"
и прикладная математика

ДИФФЕРЕНЦИАЛ СЛОЖНОЙ ФУНКЦИИ, ИНВАРИАНТНОСТЬ ФОРМЫ ДИФФЕРЕНЦИАЛА

Рассмотрим дифференциал сложной функции. Пусть y сложная функция x: , . Дифференциал этой функции, используя формулу для производной сложной функции, можно записать в виде . Но есть дифференциал функции u, поэтому , т. е.

.

Здесь дифференциал записан в том же виде, как и в формуле для дифференциала функции независимой переменной x, т. е. , хотя аргумент u является не независимой переменной, а функцией x.

Следовательно, выражение дифференциала функции в виде произведения производной этой функции на дифференциал её аргумента справедливо независимо от того, является ли аргумент независимой переменной или функцией другой переменной. Это свойство называется инвариантностью (неизменностью) формы дифференциала.

Задание к примерам. Во всех примерах требуется вычислить дифференциал функции двумя способами: выражая его через dx и через du - дифференциал промежуточной переменной u. Проверить совпадение полученных результатов.

Потребуется таблица производных некоторых сложных функций.

Пример 1. Дана функция .

Решение.

Через dx:

Использовали правило дифференцирования степенной функции.

Через du:

Подставляя в полученное равенство и , получаем

Результаты совпадают.

Поскольку дифференциал - это почти то же самое, что производная, то проверить решение именно Вашей задачи можно на калькуляторе производных.

Пример 2. Дана функция .

Решение.

Через dx:

Использовали правило дифференцирования сложной функции квадратного корня.

Через du:

.

Подставляя в полученное равенство и , получаем

Результаты совпадают.

Нет времени вникать в решение? Можно заказать работу!

К началу страницы

Пройти тест по теме Производная, дифференциал и их применение

Пример 3. Дана функция .

Решение.

Через dx:

Использовали правило дифференцирования сложной логарифмической функции.

Через du:

.

Подставляя в полученное равенство и , получаем

Результаты совпадают.

Поскольку дифференциал - это почти то же самое, что производная, то проверить решение именно Вашей задачи можно на калькуляторе производных.

Пример 4. Дана функция .

Решение.

Через dx (в процессе решения для удобства преобразуем корни в степени и обратно):

Использовали общее правило дифференцирования сложной функции два раза.

Через du:

.

Подставляя в полученное равенство и
,
получаем

Результаты совпадают.

Поскольку дифференциал - это почти то же самое, что производная, то проверить решение именно Вашей задачи можно на калькуляторе производных.

Пример 5. Дана функция .

Решение.

Через dx:

Использовали общее правило дифференцирования сложной функции и правило дифференцирования сложной логарифмической функции.

Через du:

.

Подставляя в полученное равенство и , получаем

.

Результаты совпадают.

Поскольку дифференциал - это почти то же самое, что производная, то проверить решение именно Вашей задачи можно на калькуляторе производных.

Нет времени вникать в решение? Можно заказать работу!

К началу страницы

Пройти тест по теме Производная, дифференциал и их применение

Весь блок "Производная"

Поделиться с друзьями