"Чистая"
и прикладная математика

ГИПЕРБОЛА

Определение гиперболы. Гиперболой называется множество всех точек плоскости, таких, для которых модуль разности расстояний от двух точек, называемых фокусами, есть величина постоянная и меньшая, чем расстояние между фокусами.

На чертеже ниже фокусы обозначены как и .

Каноническое уравнение гиперболы имеет вид:

,

где a и b - длины полуосей, действительной и мнимой.

На чертеже ветви гиперболы - бордового цвета.

При a = b гипербола называется равносторонней.

Пример 1. Составить каноническое уравнение гиперболы, если его действительная полуось a = 5 и мнимая  = 3.

Решение. Подставляем значения полуосей в формулу канонического уравения гиперболы и получаем:

.


Точки пересечения гиперболы с её действительной осью (т. е. с осью Ox) называются вершинами. Это точки (a, 0) (- a, 0), они обозначены и надписаны на рисунке чёрным.

Точки и , где

,

называются фокусами гиперболы (на чертеже обозначены зелёным, слева и справа от ветвей гиперболы).

Число

называется эксцентриситетом гиперболы.

Гипербола состоит из двух ветвей, лежащих в разных полуплоскостях относительно оси ординат.

Пример 2. Составить каноническое уравнение гиперболы, если расстояние между фокусами равно 10 и действительная ось равна 8.

Решение.

Если действительная полуось равна 8, то её половина, т. е. полуось a = 4,

Если расстояние между фокусами равно 10, то число c из координат фокусов равно 5.

То есть, для того, чтобы составить уравнение гиперболы, потребуется вычислить квадрат мнимой полуоси b.

Подставляем и вычисляем:

Получаем искомое каноническое уравнение гиперболы:

.

Пример 3. Составить каноническое уравнение гиперболы, если её действительная ось равна 48 и эксцентриситет .

Решение. Как следует из условия, действительная полуось a = 24. А эксцентриситет - это пропорция и так как a = 24, то коэффициент пропорциональности отношения с и a равен 2. Следовательно, c = 26. Из формулы числа c выражаем квадрат мнимой полуоси и вычисляем:

.

Получаем искомое каноническое уравнение гиперболы:


Нет времени вникать в решение? Можно заказать работу!

К началу страницы

Пройти тест по теме Кривые второго порядка


Если - произвольная точка левой ветви гиперболы () и - расстояния до этой точки от фокусов , то

.

Если - произвольная точка правой ветви гиперболы () и - расстояния до этой точки от фокусов , то

.

На чертеже расстояния обозначены оранжевыми линиями.

Для каждой точки, находящейся на гиперболе, сумма расстояний от фокусов есть величина постоянная, равная 2a.

Прямые, определяемые уравнениями

,

называются директрисами гиперболы (на чертеже - прямые ярко-красного цвета).

Из трёх вышеприведённых уравнений следует, что для любой точки гиперболы

,

где - расстояние от левого фокуса до точки любой ветви гиперболы, - расстояние от правого фокуса до точки любой ветви гиперболы и и - расстояния этой точки до директрис и .

Пример 4. Дана гипербола . Составить уравнение её директрис.

Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет гиперболы, т. е. . Вычисляем:

.

Получаем уравнение директрис гиперболы:

Многие задачи на директрисы гиперболы аналогичны задачам на директрисы эллипса. В уроке "Эллипс" это пример 7.


Характерной особенностью гиперболы является наличие асимптот - прямых, к которым приближаются точки гиперболы при удалении от центра.

Асимптоты гиперболы определяются уравнениями

.

На чертеже асимптоты - прямые серого цвета, проходящие через начало координат O.

Уравнение гиперболы, отнесённой к асимптотам, имеет вид:

, где .

В том случае, когда угол между асимптотами - прямой, гипербола называется равнобочной, и если асимптоты равнобочной гиперболы выбрать за оси координат, то её уравнение запишется в виде y = k/x, то есть в виде уравения обратной пропорциональной зависимости.

Пример 5. Даны уравнения асимптот гиперболы и координаты точки , лежащей на гиперболе. Составить уравнение гиперболы.

Решение. Дробь в уравнении асимптот гиперболы - это пропорция, следовательно, нужно сначала найти коэффициент пропорциональности отношения . Для этого подставляем в формулу канонического уравнения гиперболы координаты точки M x и y и значения числителя и знаменателя из уравнения асимптоты, кроме того, умножаем каждую дробь в левой части на коэффициент пропорциональности k.

.

Теперь имеем все данные чтобы получить искомое каноническое уравнение гиперболы. Получаем:

Гипербола обладает оптическим свойством, которое описывается следующим образом: луч, исходящий из источника света, находящегося в одном из фокусов гиперболы, после отражения движется так, как будто он исходит из другого фокуса.

Нет времени вникать в решение? Можно заказать работу!

К началу страницы

Пройти тест по теме Кривые второго порядка

Поделиться с друзьями

Другие материалы по теме Кривые второго порядка

Эллипс

Парабола